## A Supplementary File for "Towards Exploratory Landscape Analysis for Large-scale Optimization: A Dimensionality Reduction Framework"

Ryoji Tanabe Yokohama National University & Riken AIP, Japan rt.ryoji.tanabe@gmail.com

## ABSTRACT

This paper is a supplementary file for "Towards Exploratory Landscape Analysis for Large-scale Optimization: A Dimensionality Reduction Framework".



Figure S.1: Average computation time (sec) of three sampling methods over 31 runs. For each run, the three sampling methods generate a sample X with the size  $50 \times n$  in  $[0, 1]^n$ , where n is the dimension. IHS is the improved Latin hypercube sampling method (lhs in the flacco package). LHS is the Latin hypercube sampling method (lhs in the pyDOE package). RND is the random number generator in the Python Numpy library. We stopped the run of IHS for n = 320 because the single-run computation of IHS did not finish within one day.



Figure S.2: Average feature computation time (sec) on the first instance of  $f_1$  with  $n \in \{2, 3, 5, 10, 20, 40, 80, 160, 320, 640\}$ . The sample size |X| was set to 100 for all dimensions. In contrast to Figure 1 in the main paper, this figure shows how the feature computation time scale with respect to the dimension n.



Figure S.3: Average feature computation time (sec) on the first instance of  $f_1$  with n = 2. The sample size |X| was set to 100, 150, 250, 500, 1000, 2000, 8000, 16000, 32000, where they correspond to  $50 \times 2, 50 \times 3, 50 \times 5, 50 \times 10, 50 \times 20, 50 \times 40, 50 \times 80, 50 \times 160, 50 \times 320, 50 \times 640$ , respectively. In contrast to Figure 1 in the main paper, this figure shows how the feature computation time scale with respect to the sample size |X|.



Figure S.4: Average feature computation time (sec) on the first instance of  $f_1$  with  $n \in \{2, 3, 5, 10, 20, 40, 80, 160, 320, 640\}$ . This figure is an extended version of Figure 1 in the main paper by including the results of the dimensionality reduction versions of the four cell mapping features (d\_gcm, d\_cm\_angle, d\_cm\_conv, d\_cm\_grad).

Table S.1: Average accuracy of C7, C7-E2, and C7-D2 on the 24 BBOB functions with  $n \in \{2, 3, 5, 10, 20, 40, 80, 160, 320, 640\}$ . The numbers in parentheses show the standard deviation.

|     | (a) M         | fultimodality |               | (b) Global structure |               |               |               |  |  |
|-----|---------------|---------------|---------------|----------------------|---------------|---------------|---------------|--|--|
|     | C7            | C7-E2         | C7-D2         |                      | C7            | C7-E2         | C7-D2         |  |  |
| 2   | 0.642 (0.404) | 0.703 (0.357) | Na            | 2                    | 0.758 (0.402) | 0.786 (0.374) | Na            |  |  |
| 3   | 0.569(0.432)  | 0.597(0.419)  | 0.578 (0.437) | 3                    | 0.792 (0.381) | 0.797(0.373)  | 0.778 (0.389) |  |  |
| 5   | 0.536(0.443)  | 0.625 (0.411) | 0.622 (0.415) | 5                    | 0.769 (0.395) | 0.772(0.407)  | 0.761 (0.412) |  |  |
| 10  | 0.522 (0.451) | 0.631 (0.405) | 0.647 (0.434) | 10                   | 0.708 (0.424) | 0.750 (0.425) | 0.692 (0.435) |  |  |
| 20  | 0.531 (0.427) | 0.725 (0.397) | 0.639 (0.413) | 20                   | 0.714 (0.426) | 0.742 (0.419) | 0.697 (0.440) |  |  |
| 40  | 0.556 (0.465) | 0.689 (0.394) | 0.617 (0.441) | 40                   | 0.711 (0.460) | 0.711 (0.443) | 0.711 (0.460) |  |  |
| 80  | 0.600 (0.450) | 0.783 (0.371) | 0.622 (0.454) | 80                   | 0.697 (0.444) | 0.697 (0.449) | 0.697 (0.453) |  |  |
| 160 | 0.522 (0.457) | 0.650 (0.438) | 0.561 (0.475) | 160                  | 0.647 (0.447) | 0.650 (0.457) | 0.631 (0.463) |  |  |
| 320 | 0.544 (0.472) | Na            | 0.578 (0.472) | 320                  | 0.664 (0.474) | Na            | 0.667 (0.482) |  |  |
| 640 | 0.514 (0.485) | Na            | 0.583 (0.489) | 640                  | 0.667 (0.461) | Na            | 0.678(0.468)  |  |  |

|     | (c)           | Separability  |               |     | (d) Variable scaling |               |               |  |  |  |  |
|-----|---------------|---------------|---------------|-----|----------------------|---------------|---------------|--|--|--|--|
|     | C7            | C7-E2         | C7-D2         |     | C7                   | C7-E2         | C7-D2         |  |  |  |  |
| 2   | 0.756 (0.381) | 0.803 (0.344) | Na            | 2   | 0.581 (0.496)        | 0.586 (0.495) | Na            |  |  |  |  |
| 3   | 0.789 (0.363) | 0.856 (0.336) | 0.786 (0.387) | 3   | 0.611 (0.445)        | 0.583 (0.468) | 0.611 (0.456) |  |  |  |  |
| 5   | 0.758 (0.395) | 0.864 (0.322) | 0.761 (0.421) | 5   | 0.628 (0.454)        | 0.600 (0.465) | 0.594 (0.480) |  |  |  |  |
| 10  | 0.758 (0.401) | 0.828 (0.344) | 0.753 (0.411) | 10  | 0.508(0.489)         | 0.556 (0.494) | 0.572 (0.496) |  |  |  |  |
| 20  | 0.708(0.427)  | 0.808(0.377)  | 0.744 (0.401) | 20  | 0.539 (0.507)        | 0.578 (0.499) | 0.583(0.504)  |  |  |  |  |
| 40  | 0.767 (0.389) | 0.836 (0.349) | 0.758 (0.401) | 40  | 0.539 (0.507)        | 0.581 (0.496) | 0.556 (0.492) |  |  |  |  |
| 80  | 0.703 (0.440) | 0.775 (0.405) | 0.686 (0.447) | 80  | 0.542 (0.509)        | 0.583 (0.504) | 0.581 (0.501) |  |  |  |  |
| 160 | 0.697 (0.456) | 0.753 (0.421) | 0.667 (0.476) | 160 | 0.558 (0.497)        | 0.583 (0.504) | 0.583(0.504)  |  |  |  |  |
| 320 | 0.722 (0.441) | Na            | 0.669 (0.467) | 320 | 0.547 (0.499)        | Na            | 0.583(0.504)  |  |  |  |  |
| 640 | 0.725 (0.400) | Na            | 0.669 (0.453) | 640 | 0.542 (0.509)        | Na            | 0.542 (0.509) |  |  |  |  |

(e) Homogeneity

(f) Basin size

|     | C7            | C7-E2         | C7-D2         |     | C7            | C7-E2         | C7-D2         |
|-----|---------------|---------------|---------------|-----|---------------|---------------|---------------|
| 2   | 0.633 (0.397) | 0.636 (0.395) | Na            | 2   | 0.450 (0.421) | 0.492 (0.409) | Na            |
| 3   | 0.664 (0.378) | 0.608 (0.379) | 0.608 (0.389) | 3   | 0.544 (0.430) | 0.547 (0.400) | 0.522 (0.428) |
| 5   | 0.647 (0.399) | 0.578 (0.431) | 0.647 (0.408) | 5   | 0.508(0.404)  | 0.628(0.343)  | 0.522 (0.373) |
| 10  | 0.722 (0.380) | 0.658 (0.399) | 0.769 (0.338) | 10  | 0.494 (0.419) | 0.608 (0.387) | 0.636 (0.384) |
| 20  | 0.772 (0.369) | 0.731 (0.400) | 0.731 (0.403) | 20  | 0.467 (0.429) | 0.647 (0.398) | 0.558 (0.409) |
| 40  | 0.761(0.385)  | 0.700 (0.432) | 0.744 (0.407) | 40  | 0.531 (0.447) | 0.617(0.412)  | 0.614 (0.423) |
| 80  | 0.703 (0.450) | 0.639 (0.448) | 0.742 (0.412) | 80  | 0.464(0.474)  | 0.650(0.415)  | 0.597(0.460)  |
| 160 | 0.656(0.477)  | 0.625 (0.466) | 0.683 (0.439) | 160 | 0.472 (0.457) | 0.578(0.460)  | 0.614 (0.447) |
| 320 | 0.719 (0.438) | Na            | 0.761 (0.417) | 320 | 0.408(0.474)  | Na            | 0.508(0.446)  |
| 640 | 0.772 (0.413) | Na            | 0.781 (0.411) | 640 | 0.456 (0.477) | Na            | 0.528 (0.471) |

|     | (g)           | GL contrast   |               | (h) Overall average |               |               |               |  |  |  |
|-----|---------------|---------------|---------------|---------------------|---------------|---------------|---------------|--|--|--|
|     | C7            | C7-E2         | C7-D2         |                     | C7            | C7-E2         | C7-D2         |  |  |  |
| 2   | 0.572 (0.411) | 0.642 (0.335) | Na            | 2                   | 0.627 (0.422) | 0.664 (0.396) | Na            |  |  |  |
| 3   | 0.586 (0.429) | 0.600 (0.393) | 0.572 (0.422) | 3                   | 0.651 (0.413) | 0.656(0.406)  | 0.637 (0.420) |  |  |  |
| 5   | 0.497 (0.411) | 0.669 (0.358) | 0.536 (0.411) | 5                   | 0.621 (0.421) | 0.677 (0.399) | 0.635 (0.420) |  |  |  |
| 10  | 0.542 (0.403) | 0.656(0.368)  | 0.619 (0.410) | 10                  | 0.608(0.431)  | 0.669 (0.407) | 0.670(0.415)  |  |  |  |
| 20  | 0.544(0.424)  | 0.728(0.377)  | 0.617 (0.384) | 20                  | 0.611 (0.437) | 0.708(0.410)  | 0.653 (0.421) |  |  |  |
| 40  | 0.533 (0.422) | 0.708(0.368)  | 0.597 (0.428) | 40                  | 0.628 (0.445) | 0.692 (0.415) | 0.657 (0.436) |  |  |  |
| 80  | 0.558(0.458)  | 0.703 (0.423) | 0.619 (0.458) | 80                  | 0.610(0.461)  | 0.690 (0.430) | 0.649 (0.451) |  |  |  |
| 160 | 0.553 (0.441) | 0.636 (0.453) | 0.622 (0.445) | 160                 | 0.587(0.460)  | 0.639 (0.453) | 0.623 (0.458) |  |  |  |
| 320 | 0.550 (0.478) | Na            | 0.647 (0.436) | 320                 | 0.594 (0.472) | Na            | 0.631 (0.459) |  |  |  |
| 640 | 0.572 (0.481) | Na            | 0.614(0.473)  | 640                 | 0.607(0.467)  | Na            | 0.628(0.467)  |  |  |  |

Table S.2: Average accuracy of C7, C7-C4, and C7-D4 on the 24 BBOB functions with  $n \in \{2, 3, 5, 10, 20, 40, 80, 160, 320, 640\}$ . The numbers in parentheses show the standard deviation.

|     | (a) M         | fultimodality |               | (b) Global structure |               |               |               |  |  |
|-----|---------------|---------------|---------------|----------------------|---------------|---------------|---------------|--|--|
|     | C7            | C7-C4         | C7-D4         |                      | C7            | C7-C4         | C7-D4         |  |  |
| 2   | 0.642 (0.404) | 0.725 (0.368) | Na            | 2                    | 0.758 (0.402) | 0.789 (0.359) | Na            |  |  |
| 3   | 0.569 (0.432) | 0.622 (0.413) | 0.547 (0.424) | 3                    | 0.792 (0.381) | 0.797 (0.368) | 0.792 (0.392) |  |  |
| 5   | 0.536 (0.443) | 0.633 (0.417) | 0.522 (0.423) | 5                    | 0.769 (0.395) | 0.783 (0.396) | 0.778(0.400)  |  |  |
| 10  | 0.522 (0.451) | Na            | 0.561 (0.414) | 10                   | 0.708(0.424)  | Na            | 0.719 (0.426) |  |  |
| 20  | 0.531 (0.427) | Na            | 0.550 (0.436) | 20                   | 0.714 (0.426) | Na            | 0.733 (0.416) |  |  |
| 40  | 0.556 (0.465) | Na            | 0.564 (0.449) | 40                   | 0.711 (0.460) | Na            | 0.714 (0.456) |  |  |
| 80  | 0.600 (0.450) | Na            | 0.544 (0.436) | 80                   | 0.697 (0.444) | Na            | 0.706 (0.440) |  |  |
| 160 | 0.522 (0.457) | Na            | 0.528 (0.445) | 160                  | 0.647 (0.447) | Na            | 0.656 (0.453) |  |  |
| 320 | 0.544 (0.472) | Na            | 0.542 (0.472) | 320                  | 0.664 (0.474) | Na            | 0.664 (0.474) |  |  |
| 640 | 0.514 (0.485) | Na            | 0.536 (0.466) | 640                  | 0.667 (0.461) | Na            | 0.683 (0.461) |  |  |

|     | (c)           | Separability  |               |     | (d) Variable scaling |               |               |  |  |  |
|-----|---------------|---------------|---------------|-----|----------------------|---------------|---------------|--|--|--|
|     | C7            | C7-C4         | C7-D4         |     | C7                   | C7-C4         | C7-D4         |  |  |  |
| 2   | 0.756 (0.381) | 0.811 (0.345) | Na            | 2   | 0.581 (0.496)        | 0.586 (0.490) | Na            |  |  |  |
| 3   | 0.789 (0.363) | 0.856 (0.337) | 0.800 (0.390) | 3   | 0.611 (0.445)        | 0.592 (0.472) | 0.650(0.457)  |  |  |  |
| 5   | 0.758 (0.395) | 0.825 (0.352) | 0.761 (0.409) | 5   | 0.628 (0.454)        | 0.597 (0.462) | 0.636 (0.469) |  |  |  |
| 10  | 0.758 (0.401) | Na            | 0.758 (0.414) | 10  | 0.508(0.489)         | Na            | 0.528 (0.486) |  |  |  |
| 20  | 0.708(0.427)  | Na            | 0.731 (0.410) | 20  | 0.539 (0.507)        | Na            | 0.536 (0.504) |  |  |  |
| 40  | 0.767 (0.389) | Na            | 0.775 (0.402) | 40  | 0.539 (0.507)        | Na            | 0.533(0.490)  |  |  |  |
| 80  | 0.703(0.440)  | Na            | 0.719 (0.425) | 80  | 0.542 (0.509)        | Na            | 0.581 (0.501) |  |  |  |
| 160 | 0.697 (0.456) | Na            | 0.708(0.440)  | 160 | 0.558 (0.497)        | Na            | 0.583(0.504)  |  |  |  |
| 320 | 0.722 (0.441) | Na            | 0.731 (0.433) | 320 | 0.547 (0.499)        | Na            | 0.544 (0.506) |  |  |  |
| 640 | 0.725 (0.400) | Na            | 0.744 (0.413) | 640 | 0.542 (0.509)        | Na            | 0.542 (0.509) |  |  |  |

(e) Homogeneity

(f) Basin size

|     | C7            | C7-C4         | C7-D4         |     | C7            | C7-C4         | C7-D4         |
|-----|---------------|---------------|---------------|-----|---------------|---------------|---------------|
| 2   | 0.633 (0.397) | 0.650 (0.392) | Na            | 2   | 0.450 (0.421) | 0.492 (0.403) | Na            |
| 3   | 0.664(0.378)  | 0.617 (0.364) | 0.617 (0.397) | 3   | 0.544 (0.430) | 0.539 (0.389) | 0.550 (0.434) |
| 5   | 0.647 (0.399) | 0.564 (0.435) | 0.636 (0.412) | 5   | 0.508(0.404)  | 0.658 (0.324) | 0.478 (0.403) |
| 10  | 0.722 (0.380) | Na            | 0.706 (0.395) | 10  | 0.494 (0.419) | Na            | 0.531 (0.388) |
| 20  | 0.772 (0.369) | Na            | 0.769 (0.367) | 20  | 0.467 (0.429) | Na            | 0.483 (0.425) |
| 40  | 0.761 (0.385) | Na            | 0.781 (0.368) | 40  | 0.531 (0.447) | Na            | 0.533 (0.440) |
| 80  | 0.703(0.450)  | Na            | 0.706 (0.434) | 80  | 0.464(0.474)  | Na            | 0.519 (0.448) |
| 160 | 0.656(0.477)  | Na            | 0.656(0.465)  | 160 | 0.472 (0.457) | Na            | 0.472 (0.459) |
| 320 | 0.719 (0.438) | Na            | 0.772 (0.408) | 320 | 0.408(0.474)  | Na            | 0.400 (0.478) |
| 640 | 0.772(0.413)  | Na            | 0.758 (0.424) | 640 | 0.456 (0.477) | Na            | 0.492 (0.475) |

| (g) GL contrast |
|-----------------|
|-----------------|

## (h) Overall average

|     | C7            | C7-C4         | C7-D4         |     | C7            | C7-C4         | C7-D4         |
|-----|---------------|---------------|---------------|-----|---------------|---------------|---------------|
| 2   | 0.572 (0.411) | 0.647 (0.362) | Na            | 2   | 0.627 (0.422) | 0.671 (0.398) | Na            |
| 3   | 0.586 (0.429) | 0.608 (0.392) | 0.578 (0.423) | 3   | 0.651 (0.413) | 0.662(0.401)  | 0.648(0.422)  |
| 5   | 0.497 (0.411) | 0.689 (0.363) | 0.503 (0.407) | 5   | 0.621 (0.421) | 0.679 (0.398) | 0.616 (0.426) |
| 10  | 0.542 (0.403) | Na            | 0.592 (0.419) | 10  | 0.608 (0.431) | Na            | 0.628(0.423)  |
| 20  | 0.544(0.424)  | Na            | 0.558 (0.410) | 20  | 0.611 (0.437) | Na            | 0.623 (0.432) |
| 40  | 0.533 (0.422) | Na            | 0.522 (0.417) | 40  | 0.628 (0.445) | Na            | 0.632(0.440)  |
| 80  | 0.558(0.458)  | Na            | 0.553 (0.446) | 80  | 0.610(0.461)  | Na            | 0.618(0.447)  |
| 160 | 0.553 (0.441) | Na            | 0.547 (0.440) | 160 | 0.587(0.460)  | Na            | 0.593(0.457)  |
| 320 | 0.550 (0.478) | Na            | 0.550 (0.473) | 320 | 0.594(0.472)  | Na            | 0.600(0.471)  |
| 640 | 0.572 (0.481) | Na            | 0.544 (0.486) | 640 | 0.607(0.467)  | Na            | 0.614(0.466)  |

| able S.3: Average rankings of the d_( | ela_meta (dem) and d_ela_level ( | del) features in C7-D2 for $n \in \{$ | 3, 5, 10, 20, 40, 80, 160, 320, 640 }. |
|---------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|
|---------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|

| <b>(a)</b> <i>n</i> = 3        |      | <b>(b)</b> <i>n</i> = 5        |      | (c) $n = 10$                   |      | (d) $n = 20$                   |      |
|--------------------------------|------|--------------------------------|------|--------------------------------|------|--------------------------------|------|
| Feature                        | Rank | Feature                        | Rank | Feature                        | Rank | Feature                        | Rank |
| dem.lin_simple.coef.max        | 10.9 | dem.lin_simple.coef.max        | 8.9  | dem.lin_simple.coef.max        | 9.1  | dem.lin_simple.coef.max        | 8.0  |
| dem.lin_simple.intercept       | 14.2 | dem.lin_simple.intercept       | 9.6  | dem.lin_simple.intercept       | 11.5 | dem.lin_simple.intercept       | 11.1 |
| dem.lin_simple.coef.min        | 17.0 | dem.quad_simple.adj_r2         | 17.9 | dem.quad_w_interact.adj_r2     | 16.8 | dem.quad_w_interact.adj_r2     | 13.8 |
| dem.quad_simple.adj_r2         | 18.3 | dem.lin_simple.coef.min        | 18.8 | dem.lin_simple.adj_r2          | 17.0 | dem.lin_w_interact.adj_r2      | 16.3 |
| dem.quad_w_interact.adj_r2     | 18.6 | dem.quad_w_interact.adj_r2     | 20.4 | dem.lin_w_interact.adj_r2      | 17.1 | dem.lin_simple.adj_r2          | 16.7 |
| dem.lin_simple.adj_r2          | 25.2 | dem.lin_w_interact.adj_r2      | 20.4 | dem.quad_simple.adj_r2         | 17.4 | dem.quad_simple.adj_r2         | 16.7 |
| dem.lin_w_interact.adj_r2      | 27.2 | dem.lin_simple.adj_r2          | 21.0 | dem.lin_simple.coef.min        | 19.8 | dem.lin_simple.coef.min        | 16.9 |
| del.costs_runtime              | 36.7 | del.mmce_lda_25                | 40.8 | del.mmce_lda_25                | 43.2 | del.mmce_mda_50                | 33.4 |
| del.mmce_mda_25                | 43.6 | del.mmce_lda_10                | 42.5 | del.mmce_lda_10                | 45.0 | del.mmce_lda_25                | 34.4 |
| dem.quad_simple.cond           | 44.0 | del.mmce_mda_50                | 46.1 | del.mmce_mda_25                | 45.4 | del.mmce_mda_25                | 35.6 |
| del.mmce_mda_10                | 48.0 | del.mmce_mda_10                | 46.8 | del.mmce_mda_10                | 45.7 | del.mmce_lda_10                | 38.2 |
| del.mmce_lda_25                | 48.4 | del.mmce_lda_50                | 47.4 | del.costs_runtime              | 46.6 | del.mmce_mda_10                | 38.2 |
| del.qda_mda_25                 | 49.5 | del.costs_runtime              | 48.8 | del.mmce_mda_50                | 46.9 | del.mmce_lda_50                | 44.4 |
| del.mmce_qda_25                | 50.5 | del.mmce_mda_25                | 50.4 | del.mmce_lda_50                | 49.0 | del.qda_mda_10                 | 50.9 |
| dem.lin_simple.coef.max_by_min | 51.9 | del.lda_qda_10                 | 51.5 | dem.costs_runtime              | 50.4 | del.lda_qda_25                 | 51.0 |
| del.mmce_lda_50                | 51.9 | del.lda_mda_50                 | 52.6 | del.lda_qda_50                 | 52.2 | del.lda_mda_50                 | 51.1 |
| del.qda_mda_10                 | 52.3 | dem.quad_simple.cond           | 55.2 | del.qda_mda_10                 | 52.4 | del.lda_qda_10                 | 51.3 |
| del.lda_qda_50                 | 53.8 | del.mmce_qda_25                | 57.6 | del.lda_mda_50                 | 52.8 | del.mmce_qda_25                | 52.0 |
| del.mmce_lda_10                | 54.7 | del.qda_mda_25                 | 57.8 | del.lda_qda_10                 | 56.3 | del.lda_qda_50                 | 53.3 |
| del.lda_qda_10                 | 55.4 | del.lda_qda_50                 | 58.1 | del.qda_mda_50                 | 56.3 | del.qda_mda_50                 | 54.3 |
| del.lda_mda_50                 | 56.3 | del.lda_qda_25                 | 58.7 | del.mmce_qda_50                | 61.4 | del.qda_mda_25                 | 56.2 |
| del.lda_qda_25                 | 58.9 | dem.costs_runtime              | 60.3 | del.lda_mda_25                 | 61.6 | del.mmce_qda_50                | 59.6 |
| del.qda_mda_50                 | 59.2 | del.qda_mda_10                 | 60.4 | del.mmce_qda_25                | 63.1 | del.costs_runtime              | 60.2 |
| del.mmce_mda_50                | 59.9 | del.qda_mda_50                 | 61.6 | dem.quad_simple.cond           | 63.6 | dem.lin_simple.coef.max_by_min | 61.3 |
| del.lda_mda_10                 | 64.7 | dem.lin_simple.coef.max_by_min | 63.1 | del.lda_qda_25                 | 63.8 | del.lda_mda_25                 | 61.5 |
| del.lda_mda_25                 | 64.8 | del.mmce_qda_10                | 63.7 | dem.lin_simple.coef.max_by_min | 64.2 | dem.quad_simple.cond           | 64.1 |
| del.mmce_qda_50                | 67.5 | del.lda_mda_25                 | 65.8 | del.mmce_qda_10                | 66.1 | del.mmce_qda_10                | 65.2 |
| del.mmce_qda_10                | 68.4 | del.mmce_qda_50                | 67.8 | del.qda_mda_25                 | 67.3 | dem.costs_runtime              | 72.0 |
| dem.costs_runtime              | 70.2 | del.lda_mda_10                 | 70.5 | del.lda_mda_10                 | 72.7 | del.lda_mda_10                 | 74.6 |

| (e) $n = 40$                              |      | (f) $n = 80$                         |      | (g) $n = 160$                  |      | <b>(h)</b> $n = 320$                      |        |
|-------------------------------------------|------|--------------------------------------|------|--------------------------------|------|-------------------------------------------|--------|
| Feature                                   | Rank | Feature                              | Rank | Feature                        | Rank | Feature                                   | Rank   |
| dem.lin_simple.coef.max                   | 9.3  | dem.lin_simple.coef.max              | 8.1  | dem.lin_simple.coef.max        | 7.6  | dem.lin_simple.coef.max                   | 6.2    |
| dem.lin_simple.intercept                  | 10.3 | dem.lin_simple.intercept             | 10.1 | dem.lin_simple.intercept       | 11.3 | dem.lin_simple.intercept                  | 13.6   |
| dem.quad_w_interact.adj_r2                | 14.1 | dem.quad_w_interact.adj_r2           | 17.4 | dem.quad_w_interact.adj_r2     | 18.7 | dem.lin_w_interact.adj_r2                 | 21.0   |
| <pre>dem.lin_w_interact.adj_r2</pre>      | 16.9 | dem.quad_simple.adj_r2               | 18.5 | dem.lin_w_interact.adj_r2      | 19.5 | dem.lin_simple.coef.min                   | 21.4   |
| dem.lin_simple.adj_r2                     | 17.4 | dem.lin_simple.adj_r2                | 18.7 | dem.lin_simple.adj_r2          | 20.5 | dem.quad_w_interact.adj_r2                | 23.1   |
| <pre>dem.quad_simple.adj_r2</pre>         | 19.8 | <pre>dem.lin_w_interact.adj_r2</pre> | 19.0 | dem.quad_simple.adj_r2         | 21.1 | dem.lin_simple.adj_r2                     | 23.6   |
| dem.lin_simple.coef.min                   | 20.4 | dem.lin_simple.coef.min              | 24.2 | dem.lin_simple.coef.min        | 22.6 | <pre>dem.quad_simple.adj_r2</pre>         | 24.4   |
| del.mmce_mda_50                           | 35.6 | del.mmce_mda_50                      | 34.8 | del.mmce_mda_50                | 28.6 | del.mmce_lda_25                           | 36.6   |
| del.mmce_mda_10                           | 39.4 | del.mmce_lda_25                      | 36.6 | del.mmce_lda_25                | 35.6 | del.mmce_lda_10                           | 36.7   |
| del.mmce_lda_10                           | 39.6 | del.mmce_lda_10                      | 38.9 | del.mmce_lda_50                | 38.4 | del.mmce_mda_50                           | 37.0   |
| del.mmce_lda_50                           | 40.8 | del.mmce_mda_10                      | 39.9 | del.mmce_mda_25                | 39.4 | del.mmce_qda_25                           | 37.2   |
| del.mmce_mda_25                           | 42.7 | del.mmce_mda_25                      | 42.1 | del.mmce_lda_10                | 40.9 | del.mmce_mda_10                           | 38.1   |
| del.mmce_lda_25                           | 43.2 | del.mmce_lda_50                      | 44.1 | del.mmce_mda_10                | 41.4 | del.mmce_lda_50                           | 38.6   |
| del.lda_qda_50                            | 45.7 | del.qda_mda_50                       | 44.9 | del.mmce_qda_25                | 47.2 | del.mmce_mda_25                           | 42.0   |
| del.qda_mda_50                            | 46.9 | del.lda_qda_50                       | 45.0 | del.mmce_qda_50                | 49.7 | del.qda_mda_50                            | 46.9   |
| del.lda_mda_50                            | 48.7 | del.mmce_qda_10                      | 50.1 | del.qda_mda_50                 | 49.7 | del.costs_runtime                         | 48.8   |
| del.lda_qda_25                            | 50.9 | del.lda_mda_50                       | 50.8 | del.mmce_qda_10                | 51.8 | del.mmce_qda_10                           | 49.4   |
| del.qda_mda_10                            | 54.8 | del.mmce_qda_25                      | 52.5 | del.lda_mda_50                 | 52.8 | del.lda_qda_50                            | 51.0   |
| del.mmce_qda_10                           | 56.3 | del.costs_runtime                    | 54.9 | del.lda_qda_25                 | 53.2 | del.mmce_qda_50                           | 54.9   |
| del.lda_qda_10                            | 56.6 | del.lda_qda_25                       | 55.8 | del.lda_qda_50                 | 54.8 | del.lda_qda_25                            | 55.0   |
| del.mmce_qda_25                           | 56.8 | del.qda_mda_25                       | 57.3 | del.qda_mda_10                 | 55.6 | del.lda_mda_50                            | 55.4   |
| del.qda_mda_25                            | 57.8 | del.lda_qda_10                       | 58.8 | del.qda_mda_25                 | 56.1 | del.lda_qda_10                            | 56.7   |
| del.lda_mda_25                            | 60.7 | del.qda_mda_10                       | 60.0 | del.lda_qda_10                 | 56.3 | del.qda_mda_25                            | 57.5   |
| del.mmce_qda_50                           | 60.8 | del.mmce_qda_50                      | 61.1 | del.lda_mda_25                 | 61.3 | del.qda_mda_10                            | 58.0   |
| del.costs_runtime                         | 66.2 | del.lda_mda_25                       | 62.1 | del.costs_runtime              | 66.1 | del.lda_mda_25                            | 59.7   |
| <pre>dem.lin_simple.coef.max_by_min</pre> | 67.3 | dem.lin_simple.coef.max_by_min       | 70.1 | dem.quad_simple.cond           | 67.2 | dem.costs_runtime                         | 68.7   |
| dem.quad_simple.cond                      | 67.3 | dem.quad_simple.cond                 | 72.3 | dem.lin_simple.coef.max_by_min | 67.3 | <pre>dem.lin_simple.coef.max_by_min</pre> | 1 69.9 |
| dem.costs_runtime                         | 72.3 | dem.costs_runtime                    | 73.9 | dem.costs_runtime              | 71.8 | dem.quad_simple.cond                      | 70.1   |
| del.lda_mda_10                            | 75.8 | del.lda_mda_10                       | 75.7 | del.lda_mda_10                 | 75.8 | del.lda_mda_10                            | 74.7   |

(i) n = 640 (part 1)

(j) n = 640 (part 2)

| Feature                              | Rank | Feature                        | Rank |
|--------------------------------------|------|--------------------------------|------|
| dem.lin_simple.coef.max              | 10.4 | del.gda_mda_50                 | 46.2 |
| dem.lin_simple.intercept             | 14.0 | del.mmce_qda_50                | 46.8 |
| dem.lin_simple.coef.min              | 22.7 | del.lda_qda_50                 | 51.1 |
| dem.quad_simple.adj_r2               | 22.8 | del.lda_qda_25                 | 51.3 |
| dem.quad_w_interact.adj_r2           | 23.2 | del.qda_mda_10                 | 53.1 |
| dem.lin_simple.adj_r2                | 23.9 | del.lda_mda_50                 | 53.8 |
| <pre>dem.lin_w_interact.adj_r2</pre> | 25.5 | del.lda_qda_10                 | 55.2 |
| del.mmce_qda_25                      | 29.7 | del.qda_mda_25                 | 56.3 |
| del.mmce_lda_50                      | 29.7 | del.lda_mda_25                 | 64.1 |
| del.mmce_mda_50                      | 30.1 | dem.costs_runtime              | 68.9 |
| del.mmce_lda_25                      | 34.7 | dem.lin_simple.coef.max_by_min | 69.5 |
| del.mmce_lda_10                      | 36.7 | dem.quad_simple.cond           | 69.6 |
| del.mmce_mda_10                      | 37.3 | del.costs_runtime              | 71.7 |
| del.mmce_qda_10                      | 43.3 | del.lda_mda_10                 | 75.1 |
| del.mmce_mda_25                      | 43.4 |                                |      |

Table S.4: Average rankings of the d\_cm\_angle (dca), d\_cm\_conv (dcc), d\_cm\_grad (dcg), and d\_gcm (dg) features in C7-D4 for  $n \in \{3, 5, 10, 20, 40, 80, 160, 320, 640\}$ .

| (a) $n = 3$                    |              | <b>(b)</b> <i>n</i> = 5        | 5 (c) <i>n</i> = 10 |                                |              | (d) $n = 20$                   |              |
|--------------------------------|--------------|--------------------------------|---------------------|--------------------------------|--------------|--------------------------------|--------------|
| Feature                        | Rank         | Feature                        | Rank                | Feature                        | Rank         | Feature                        | Rank         |
| dca.costs_runtime              | 25.4         | dca.y_ratio_best2worst.mean    | 20.4                | dca.y_ratio_best2worst.mean    | 25.4         | dca.y_ratio_best2worst.mean    | 26.1         |
| dca.y_ratio_best2worst.mean    | 29.6         | dca.y_ratio_best2worst.sd      | 30.8                | dca.y_ratio_best2worst.sd      | 28.9         | dca.y_ratio_best2worst.sd      | 31.6         |
| dca.y_ratio_best2worst.sd      | 39.0         | dca.angle.sd                   | 44.2                | dcg.mean                       | 46.3         | dca.costs_runtime              | 46.3         |
| dg.min.costs_runtime           | 39.0         | dca.angle.mean                 | 47.6                | dg.near.basin_prob.min         | 47.1         | dca.dlst_ctr2worst.mean        | 47.3         |
| dg.near.costs runtime          | 43.9         | dca.dist_ctr2worst.sd          | 48.5                | dca.angle.mean                 | 51.2         | dca.dist_ctr2worst.sd          | 51.0         |
| dca.dist_ctr2best.mean         | 44.5         | dcg.sd                         | 49.8                | dca.dist_ctr2worst.mean        | 51.8         | dcg.sd                         | 52.0         |
| dca.dist_ctr2worst.sd          | 48.5         | dca.dist_ctr2best.sd           | 50.4                | dg.mean.basin_prob.min         | 52.5         | dcg.costs_runtime              | 52.8         |
| dcg.mean                       | 48.8         | dca.dist_ctr2best.mean         | 51.9                | dcg.sd                         | 53.1         | dca.dist_ctr2best.sd           | 53.4         |
| dg.mean.costs_runtime          | 48.8         | dcg.mean                       | 53.0<br>53.0        | dca.dist_ctr2best.sd           | 53.2<br>53.8 | dca.angle.mean                 | 53.4<br>54.6 |
| dca.angle.mean                 | 50.4         | dg.near.basin_prob.min         | 54.8                | dca.dist_ctr2best.mean         | 55.8<br>54.1 | dcg.mean                       | 55.2         |
| dca.dist_ctr2worst.mean        | 50.8         | dcg.costs_runtime              | 56.9                | dg.near.best_attr.prob         | 56.0         | dg.near.basin_prob.min         | 55.8         |
| dca.angle.sd                   | 52.4         | dg.near.best_attr.prob         | 59.4                | dcg.costs_runtime              | 60.3         | dg.mean.basin_prob.min         | 56.4         |
| dcg.sd                         | 52.8         | dg.min.basin_prob.min          | 60.3                | dg.min.basin_prob.min          | 62.2         | dg.near.costs_runtime          | 58.2         |
| dg.mean.basin_prob.min         | 61.5         | dcc.costs_runtime              | 61.1                | dg.mean.best_attr.prob         | 65.8         | dg.mean.costs_runtime          | 59.4         |
| dg near basin prob min         | 63.1         | dcc_convex_soft                | 61.9                | dg mean basin prob median      | 66.8         | dg mean basin prob max         | 65.0         |
| dg.mean.best_attr.prob         | 63.9         | dg.near.basin prob.max         | 64.5                | dg.near.costs_runtime          | 66.9         | dg.mean.best_attr.prob         | 66.1         |
| dg.min.best_attr.prob          | 64.6         | dg.min.basin_prob.max          | 65.0                | dg.min.basin_prob.max          | 67.9         | dg.min.costs_runtime           | 67.2         |
| dg.near.basin_prob.max         | 65.2         | dg.min.best_attr.prob          | 67.6                | dg.min.best_attr.prob          | 67.9         | dg.min.basin_prob.min          | 69.0         |
| dg.min.basin_prob.min          | 65.7         | dg.near.costs_runtime          | 68.6                | dcc.concave.hard               | 68.7         | dg.min.basin_prob.max          | 69.6         |
| dg.mean.basin_prob.max         | 66.2         | dca.costs_runtime              | 69.0<br>70.0        | dg.mean.costs_runtime          | 69.7<br>70.1 | dg.min.best_attr.prob          | 69.7<br>70.2 |
| dcc.convex soft                | 68.8         | dg mean best attr prob         | 70.0                | dcc concave soft               | 70.1         | dg near basin prob max         | 70.2         |
| dg.min.basin prob.max          | 69.4         | dg.mean.basin prob.median      | 72.9                | dg.near.basin prob.max         | 70.1         | dg.mean.basin_prob.max         | 72.0         |
| dg.mean.basin_prob.median      | 70.1         | dg.near.basin_uncertain.max    | 75.0                | dcc.costs_runtime              | 72.0         | dg.near.basin_certain.sum      | 72.6         |
| dcc.costs_runtime              | 71.3         | dcc.concave.hard               | 75.3                | dg.near.basin_uncertain.min    | 72.5         | dg.near.uncertain              | 73.5         |
| dcc.concave.hard               | 77.0         | dg.min.basin_prob.median       | 76.7                | dg.min.costs_runtime           | 73.8         | dg.near.best_attr.prob         | 75.1         |
| dg.near.basin_prob.median      | 77.6         | dg.mean.costs_runtime          | 77.5                | dca.costs_runtime              | 73.9         | dg.mean.basin_uncertain.min    | 82.0         |
| dg mean basin uncertain mean   | 78.2<br>81.0 | dg near basin prob median      | 80.7<br>81.1        | dg mean basin uncertain mean   | 70.5<br>77 4 | da mean basin uncertain median | 82.0<br>82.0 |
| dg.mean.basin_prob.mean        | 81.2         | dg.min.basin_prob.median       | 81.5                | dg.mean.basin_prob.mean        | 78.1         | dg.mean.basin_certain.sum      | 82.6         |
| dg.mean.basin_uncertain.median | 83.8         | dg.min.basin_uncertain.mean    | 81.5                | dg.mean.basin_certain.sum      | 81.2         | dcc.convex.soft                | 82.6         |
| dg.near.basin_certain.mean     | 84.2         | dg.mean.basin_uncertain.mean   | 81.6                | dg.near.basin_certain.sum      | 83.5         | dg.mean.basin_uncertain.mean   | 83.0         |
| dg.min.basin_uncertain.median  | 85.3         | dg.mean.basin_prob.mean        | 83.1                | dg.near.uncertain              | 84.2         | dg.near.basin_certain.median   | 84.1         |
| dg.min.basin_uncertain.mean    | 85.8         | dg.near.uncertain              | 83.4                | dg.mean.basin_uncertain.min    | 85.4         | dg.mean.basin_prob.mean        | 84.8         |
| dg.min.basin_prob.mean         | 86.9         | dg.near.basin_certain.mean     | 83.7                | dg.near.basin_uncertain.max    | 86.9         | dcc.concave.hard               | 85.9         |
| dg min basin uncertain min     | 88 7         | dg mean basin certain sum      | 85 0                | dg near basin prob median      | 87.8         | dg near basin prob median      | 80.7<br>87.4 |
| dcc.convex.hard                | 88.8         | dg.mean.basin_uncertain.median | 86.4                | dg.near.basin_certain.mean     | 88.0         | dg.min.basin_uncertain.max     | 88.4         |
| dg.min.basin_certain.sum       | 89.0         | dg.min.basin_uncertain.median  | 86.5                | dg.mean.uncertain              | 89.9         | dg.near.basin_certain.min      | 89.3         |
| dg.near.uncertain              | 89.1         | dg.mean.basin_uncertain.min    | 87.1                | dg.mean.basin_certain.mean     | 91.2         | dg.min.basin_prob.median       | 89.5         |
| dg.near.basin_certain.sum      | 89.3         | dg.near.basin_uncertain.min    | 87.8                | dg.min.basin_uncertain.max     | 92.7         | dg.mean.uncertain              | 90.2         |
| dg.min.basin_certain.mean      | 89.9         | dg.near.basin_certain.max      | 87.8                | dg.mean.basin_uncertain.max    | 93.3         | dg.near.basin_uncertain.max    | 92.7         |
| dg near basin uncertain max    | 91.9         | dg min basin certain mean      | 95.0<br>95.7        | dg min basin uncertain mean    | 94.0         | dg mean basin uncertain max    | 93.0<br>93.4 |
| dg.mean.basin_uncertain.max    | 93.1         | dcc.convex.hard                | 96.1                | dg.min.basin_prob.mean         | 94.0         | dg.mean.basin_certain.mean     | 95.2         |
| dg.mean.basin_certain.mean     | 93.2         | dg.mean.basin_uncertain.max    | 96.9                | dg.near.basin_certain.max      | 94.4         | dg.min.basin_uncertain.mean    | 95.6         |
| dg.min.basin_uncertain.max     | 93.3         | dg.mean.basin_certain.mean     | 97.0                | dg.mean.basin_certain.median   | 95.0         | dg.min.basin_prob.mean         | 96.2         |
| dg.min.basin_certain.max       | 96.6         | dg.near.basin_certain.median   | 97.1                | dg.mean.basin_certain.max      | 96.4         | dg.min.basin_certain.mean      | 96.9         |
| dg.min.basin_certain.median    | 96.9         | dg.min.basin_uncertain.min     | 97.5                | dg.min.basin_certain.sum       | 98.7         | dg.near.basin_certain.max      | 97.2         |
| dg near basin uncertain min    | 98.1         | dg min basin certain sum       | 98.5                | dg min uncertain               | 99.2         | dg min basin certain sum       | 99.5         |
| dg.mean.basin_certain.max      | 98.2         | dg.mean.basin_certain.max      | 99.0                | dcc.convex.hard                | 99.7         | dg.mean.basin_certain.median   | 99.7         |
| dg.mean.uncertain              | 98.5         | dg.min.basin_certain.max       | 100.0               | dg.near.basin_certain.median   | 101.2        | dg.min.uncertain               | 99.8         |
| dg.near.basin_uncertain.median | 98.8         | dg.min.basin_certain.median    | 102.0               | dg.min.basin_certain.mean      | 101.3        | dcc.convex.hard                | 100.2        |
| dg.mean.tcells                 | 99.5         | dg.min.uncertain               | 102.0               | dg.near.basin_uncertain.median | 101.8        | dg.min.basin_certain.max       | 100.4        |
| dg.mean.basin_uncertain.min    | 100.0        | dg.mean.basin_certain.median   | 102.5               | dg.min.basin_certain.median    | 103.9        | dg.min.basin_uncertain.min     | 101.3        |
| dg mean basin certain median   | 100.5        | dg mean tcells                 | 105.1               | dg near basin uncertain mean   | 104.0        | dg near basin uncertain median | 101.4        |
| dg.min.tcells                  | 104.0        | dg.near.basin_uncertain.mean   | 105.6               | dg.min.basin_certain.max       | 104.5        | dg.mean.tcells                 | 105.4        |
| dg.near.basin_uncertain.mean   | 107.8        | dg.near.attractors             | 106.0               | dg.mean.tcells                 | 104.7        | dg.mean.pcells                 | 111.4        |
| dg.near.basin_prob.mean        | 109.1        | dg.min.tcells                  | 106.1               | dg.near.attractors             | 105.1        | dg.min.tcells                  | 111.4        |
| dg.near.attractors             | 109.5        | dg.near.basin_prob.mean        | 106.7               | dg.near.tcells                 | 105.4        | dg.near.basin_prob.mean        | 111.8        |
| dg.mean.pcells                 | 110.5        | dg.near.tcells                 | 108.1               | dg.min.tcells                  | 108.7        | dg.near.basin_uncertain.mean   | 112.2        |
| dg near tcells                 | 110.0        | dg mean ncells                 | 108.5               | dg near basin certain min      | 100.7        | dg near attractors             | 112.4        |
| dg.min.basin_certain.min       | 111.1        | dg.mean.attractors             | 111.1               | dg.mean.attractors             | 112.6        | dg.mean.basin_certain.min      | 113.1        |
| dg.mean.basin_uncertain.sum    | 111.1        | dg.mean.basin_uncertain.sum    | 112.0               | dg.mean.pcells                 | 112.7        | dg.near.tcells                 | 113.3        |
| dg.mean.attractors             | 111.3        | dg.min.basin_uncertain.sum     | 113.2               | dg.mean.basin_certain.min      | 112.8        | dg.mean.basin_uncertain.sum    | 113.3        |
| dg.min.basin_uncertain.sum     | 112.6        | dg.mean.basin_certain.min      | 114.2               | dg.min.basin_certain.min       | 113.4        | dg.near.pcells                 | 113.5        |
| dg.near.basin_certain.min      | 115.2        | dg.near.basin_certain.min      | 114.4               | dg.mean.basin_uncertain.sum    | 113.8        | dg.min.basin_uncertain.sum     | 113.6        |
| ug.mean.basin_certain.min      | 11/.8        | dg min pcells                  | 116.1               | dg min attractors              | 114.5        | ug.min.pasin_certain.min       | 116.1        |
| dg.min.attractors              | 120.3        | dg.min.attractors              | 118.6               | dg.min.pcells                  | 120.5        | dg.min.attractors              | 120.9        |
| dg.near.best_attr.no           | 123.5        | dg.near.best_attr.no           | 123.7               | dg.near.best_attr.no           | 124.0        | dg.min.pcells                  | 121.3        |

Table S.5: Average rankings of the d\_cm\_angle (dca), d\_cm\_conv (dcc), d\_cm\_grad (dcg), and d\_gcm (dg) features in C7-D4 for  $n \in \{40, 80, 160, 320, 640\}$ .

| (a) $n = 40$                   |              | <b>(b)</b> <i>n</i> = 80       |               | (c) $n = 160$                  |              | ( <b>d</b> ) <i>n</i> = 320    |              |
|--------------------------------|--------------|--------------------------------|---------------|--------------------------------|--------------|--------------------------------|--------------|
| Feature                        | Rank         | Feature                        | Rank          | Feature                        | Rank         | Feature                        | Rank         |
| dca.y_ratio_best2worst.mean    | 34.2         | dca.y_ratio_best2worst.mean    | 40.5          | dca.y_ratio_best2worst.mean    | 43.4         | dca.y_ratio_best2worst.sd      | 43.2         |
| dca.y_ratio_best2worst.sd      | 36.0         | dca.y_ratio_best2worst.sd      | 44.6          | dca.y_ratio_best2worst.sd      | 45.2         | dca.y_ratio_best2worst.mean    | 46.5         |
| dg.mean.basin_prob.min         | 49.0         | dca.angle.mean                 | 48.9          | dcc.costs_runtime              | 47.4         | dca.angle.mean                 | 49.2         |
| dcg sd                         | 50.5<br>53.1 | dg mean basin prob min         | 54.4<br>54.9  | dcg sd                         | 40.4<br>50.6 | dg near costs runtime          | 49.5         |
| dcg.mean                       | 53.7         | dca.dist_ctr2best.mean         | 55.3          | dca.angle.sd                   | 51.6         | dca.angle.sd                   | 51.2         |
| dg.mean.basin_prob.median      | 54.5         | dcg.sd                         | 55.4          | dcg.mean                       | 51.6         | dcg.costs_runtime              | 51.8         |
| dca.angle.mean                 | 54.8         | dcg.costs_runtime              | 56.7          | dcg.costs_runtime              | 55.2         | dca.dist_ctr2worst.mean        | 52.7         |
| dca.dlst_ctr2worst.mean        | 55.5         | dcg.mean                       | 58.4          | dg.mean.basin_prob.min         | 56.6         | dca.dist_ctr2best.sd           | 53.6         |
| dcg costs runtime              | 57.8         | dca dist ctr2worst sd          | 59.9          | dca dist ctr2worst sd          | 58.0<br>58.7 | dcg mean                       | 55.9         |
| dg.near.basin_prob.min         | 59.2         | dca.dist_ctr2worst.mean        | 60.0          | dg.near.basin_prob.max         | 60.3         | dca.dist_ctr2best.mean         | 56.3         |
| dcc.costs_runtime              | 59.7         | dca.dist_ctr2best.sd           | 60.2          | dg.min.basin_prob.min          | 60.6         | dg.min.basin_prob.min          | 57.1         |
| dca.angle.sd                   | 61.6         | dg.near.costs_runtime          | 61.7          | dca.dist_ctr2best.sd           | 61.3         | dca.costs_runtime              | 57.5         |
| dca.dist_ctr2best.mean         | 62.6         | dg.mean.best_attr.prob         | 63.1          | dca.dist_ctr2best.mean         | 61.5         | dg.near.basin_prob.min         | 61.2         |
| dg near costs runtime          | 64.5<br>64.6 | dg min basin prob min          | 64.5          | dg near basin prob min         | 64.1         | dg near basin prob max         | 61.5<br>61.0 |
| dg.min.basin prob.min          | 65.4         | dca.costs runtime              | 65.6          | dg.min.best attr.prob          | 66.6         | dg.mean.basin_prob.max         | 63.7         |
| dg.mean.best_attr.prob         | 65.7         | dg.mean.basin_prob.median      | 65.7          | dg.mean.basin_prob.max         | 66.6         | dg.mean.best_attr.prob         | 64.2         |
| dg.min.best_attr.prob          | 66.2         | dg.min.best_attr.prob          | 66.7          | dca.costs_runtime              | 68.2         | dg.min.best_attr.prob          | 64.4         |
| dg.min.basin_prob.max          | 69.3         | dg.near.basin_prob.max         | 69.1          | dg.near.basin_prob.median      | 68.9         | dg.min.basin_prob.max          | 65.5         |
| dca.costs_runtime              | 70.1         | dg.min.basin_prob.max          | 70.1          | dg.min.basin_prob.max          | 69.2         | dg.near.best_attr.prob         | 72.4         |
| dg near best attr prob         | 71.2         | dg near best attr prob         | 72.5          | dg near basin certain mean     | 70.5         | dg min basin uncertain min     | 76.2         |
| dg.mean.basin prob.mean        | 72.1         | dg.near.basin prob.min         | 73.0          | dg.mean.best attr.prob         | 75.1         | dg.min.basin_prob.median       | 78.5         |
| dg.mean.basin_uncertain.min    | 72.5         | dcc.convex.soft                | 73.7          | dcc.concave.soft               | 75.6         | dg.mean.basin_prob.median      | 78.7         |
| dg.mean.basin_uncertain.median | 72.8         | dg.mean.basin_prob.mean        | 74.7          | dcc.convex.soft                | 76.6         | dg.near.basin_certain.mean     | 79.7         |
| dg.near.basin_prob.max         | 73.7         | dg.mean.basin_uncertain.median | 76.6          | dg.near.uncertain              | 77.9         | dg.near.basin_prob.median      | 81.4         |
| dcc.convex.soft                | 78.9         | dg.mean.basin_uncertain.mean   | 76.7          | dg.min.basin_prob.median       | 78.3         | dg.min.costs_runtime           | 82.1         |
| dg mean attractors             | 80.2         | dg near basin prob median      | 79.9<br>82.4  | dg mean basin prob median      | 70.0<br>83.1 | dcc concave soft               | 823          |
| dcc.concave.soft               | 80.7         | dg.near.basin_certain.mean     | 83.4          | dg.min.basin_prob.mean         | 83.2         | dg.near.basin_uncertain.min    | 82.4         |
| dg.min.basin_prob.median       | 81.0         | dg.mean.costs_runtime          | 84.7          | dg.mean.basin_prob.mean        | 84.3         | dg.near.uncertain              | 82.9         |
| dg.min.costs_runtime           | 81.8         | dg.near.basin_certain.sum      | 85.4          | dg.min.basin_uncertain.min     | 84.4         | dcc.concave.hard               | 83.3         |
| dg.mean.costs_runtime          | 84.0         | dg.min.basin_uncertain.mean    | 86.2          | dg.near.basin_uncertain.min    | 85.0         | dg.mean.basin_prob.mean        | 83.7         |
| dg.min.uncertain               | 84.5         | dg.mean.basin_uncertain.min    | 86.2          | dg.mean.basin_uncertain.mean   | 85.4         | dg.near.basin_uncertain.max    | 84.2         |
| dg min basin uncertain mean    | 87 0         | dg min basin prob mean         | 87.4          | dcc concave hard               | 86.8         | dcc convex soft                | 85.6         |
| dg.mean.basin_certain.sum      | 89.8         | dg.mean.basin_certain.sum      | 88.9          | dg.min.basin_uncertain.mean    | 87.1         | dg.min.basin_uncertain.mean    | 86.3         |
| dg.mean.uncertain              | 90.3         | dg.near.uncertain              | 89.0          | dg.near.basin_certain.max      | 87.9         | dg.min.uncertain               | 87.5         |
| dg.min.basin_prob.mean         | 90.4         | dg.near.basin_certain.max      | 89.2          | dg.mean.basin_uncertain.median | 88.2         | dg.near.basin_uncertain.median | 88.0         |
| dg.near.basin_uncertain.max    | 90.5         | dg.min.basin_uncertain.median  | 90.2          | dg.near.basin_uncertain.median | 88.5         | dg.near.basin_certain.median   | 88.0         |
| dg min basin uncertain median  | 92.7         | dg mean uncertain              | 91.2          | dg mean basin uncertain min    | 91.1         | dg mean basin uncertain max    | 90.4         |
| dg.near.basin_certain.mean     | 93.1         | dg.mean.basin_certain.mean     | 91.5          | dg.near.basin_certain.median   | 93.0         | dg.min.basin_uncertain.median  | 91.4         |
| dg.mean.basin_uncertain.max    | 93.4         | dg.min.costs_runtime           | 92.2          | dg.min.basin_certain.mean      | 93.1         | dg.mean.basin_uncertain.median | 92.3         |
| dg.mean.basin_certain.mean     | 93.7         | dg.min.basin_certain.sum       | 93.0          | dg.min.uncertain               | 94.4         | dg.mean.basin_certain.sum      | 94.7         |
| dg.mean.basin_certain.median   | 94.1         | dg.mean.basin_certain.median   | 94.4          | dg.min.basin_uncertain.max     | 95.2         | dg.mean.uncertain              | 96.9         |
| dg min basin certain sum       | 94.5         | dg near basin uncertain max    | 90.8          | dg min basin certain median    | 90.5         | dø near basin certain min      | 90.9<br>97 1 |
| dg.min.basin_uncertain.max     | 96.0         | dg.min.basin_uncertain.max     | 97.6          | dg.mean.tcells                 | 98.3         | dg.mean.tcells                 | 97.6         |
| dg.mean.tcells                 | 98.5         | dcc.concave.hard               | 98.3          | dg.mean.costs_runtime          | 98.7         | dg.mean.basin_certain.mean     | 98.0         |
| dg.min.basin_certain.mean      | 99.2         | dcc.convex.hard                | 98.7          | dg.mean.uncertain              | 98.9         | dg.min.basin_certain.sum       | 98.9         |
| dg.near.basin_certain.median   | 100.5        | dg.mean.basin_certain.max      | 98.8          | dg.min.costs_runtime           | 99.8         | dg.mean.basin_uncertain.sum    | 99.9         |
| dg near basin certain sum      | 100.9        | dg min basin certain median    | 99.5<br>100 5 | dg mean basin certain sum      | 100.1        | dg min tcells                  | 100.1        |
| dg.near.basin_uncertain.median | 101.8        | dg.mean.tcells                 | 101.7         | dg.near.pcells                 | 103.8        | dg.mean.basin_uncertain.min    | 100.7        |
| dcc.concave.hard               | 103.0        | dg.min.uncertain               | 102.1         | dg.min.tcells                  | 103.9        | dg.min.basin_certain.mean      | 100.8        |
| dg.min.basin_certain.max       | 103.5        | dg.near.basin_certain.median   | 104.0         | dg.near.basin_prob.mean        | 103.9        | dg.min.basin_uncertain.sum     | 100.8        |
| dg.min.basin_certain.median    | 105.1        | dg.near.basin_uncertain.min    | 104.7         | dg.near.basin_certain.min      | 104.5        | dg.near.basin_certain.max      | 100.8        |
| dg min tcells                  | 105.5        | dg mean basin uncertain sum    | 105.2         | dg near tcells                 | 104.8        | dg near attractors             | 104.5        |
| dg.near.basin_certain.max      | 106.0        | dg.mean.pcells                 | 106.2         | dg.mean.basin_certain.mean     | 105.6        | dg.mean.basin_certain.max      | 104.9        |
| dg.mean.basin_uncertain.sum    | 107.2        | dg.near.basin_uncertain.median | 107.0         | dg.near.attractors             | 106.2        | dg.near.pcells                 | 107.4        |
| dg.min.basin_uncertain.sum     | 108.0        | dg.mean.attractors             | 107.2         | dcc.convex.hard                | 106.9        | dcc.convex.hard                | 107.5        |
| dg.near.basin_uncertain.mean   | 108.1        | dg.min.tcells                  | 109.0         | dg.near.basin_uncertain.mean   | 106.9        | dg.near.tcells                 | 107.6        |
| dg.near.basin_prob.mean        | 108.3        | dg.mean.basin_certain.min      | 109.2         | dg.mean.basin_certain.median   | 107.5        | dg.min.basin_certain.median    | 108.0        |
| dg near tcells                 | 108.5        | dg near basin certain min      | 112.5         | dg mean basin uncertain sum    | 111.3        | dg near best attr no           | 108.2        |
| dg.near.pcells                 | 109.9        | dg.near.basin_uncertain.mean   | 113.4         | dg.min.basin_uncertain.sum     | 111.7        | dg.near.basin_prob.mean        | 110.7        |
| dg.mean.basin_certain.min      | 110.1        | dg.near.tcells                 | 114.2         | dg.min.basin_certain.min       | 111.8        | dg.mean.basin_certain.min      | 110.7        |
| dcc.convex.hard                | 113.5        | dg.near.basin_prob.mean        | 114.7         | dg.mean.attractors             | 115.0        | dg.min.attractors              | 112.3        |
| dg.min.basin_certain.min       | 117.3        | dg.near.pcells                 | 114.7         | dg.near.best_attr.no           | 116.9        | ag.min.pcells                  | 114.3        |
| dg min attractors              | 120.5        | dg min pcells                  | 115.4         | dg min pcells                  | 117.1        | dg mean attractors             | 120.3        |
| dg.min.pcells                  | 120.7        | dg.near.best_attr.no           | 118.8         | dg.mean.pcells                 | 118.3        | dg.mean.pcells                 | 120.5        |
| dg.near.best_attr.no           | 124.7        | dg.min.attractors              | 119.1         | dg.mean.basin_certain.min      | 118.6        | ·                              |              |

Table S.6: Average rankings of the d\_cm\_angle (dca), d\_cm\_conv (dcc), d\_cm\_grad (dcg), and d\_gcm (dg) features in C7-D4 for n = 640.

**(a)** *n* = 640

| Feature                                               | Rank           |
|-------------------------------------------------------|----------------|
| dca.y_ratio_best2worst.sd                             | 43.2           |
| dca.angle.mean                                        | 44.7           |
| dcg.mean                                              | 47.1<br>50.5   |
| dg.near.costs_runtime                                 | 50.8           |
| dca.angle.sd                                          | 51.1           |
| dca.dist_ctr2worst.mean                               | 51.4<br>52.2   |
| dca.y_ratio_best2worst.mean                           | 52.6           |
| dca.dist_ctr2best.sd                                  | 52.9           |
| dcg.costs_runtime<br>dca dist_ctr2worst_sd            | 54.9<br>55.4   |
| dg.min.basin_prob.max                                 | 57.6           |
| dg.near.basin_prob.min                                | 62.2           |
| dg.min.basin_prob.min<br>dca_costs_runtime            | 62.3<br>62.9   |
| dg.min.best_attr.prob                                 | 63.8           |
| dg.min.basin_prob.median                              | 64.3           |
| dg.mean.basin_prob.min<br>dg.near.best.attr.prob      | 64.9<br>65.7   |
| dg.mean.basin_prob.max                                | 67.8           |
| dg.near.basin_prob.max                                | 69.4           |
| dg.mean.best_attr.prob                                | 70.2           |
| dg.near.basin_uncertain.min                           | 75.1           |
| dg.near.basin_prob.median                             | 75.7           |
| dg.min.basin_uncertain.mean                           | 76.1           |
| dcc.convex.soft                                       | 79.0<br>79.6   |
| dg.min.uncertain                                      | 81.1           |
| dg.mean.costs_runtime                                 | 81.7           |
| dcc concave soft                                      | 83.5<br>84 1   |
| dg.mean.basin_prob.median                             | 84.2           |
| dg.min.costs_runtime                                  | 85.9           |
| dg.near.basin_uncertain.median                        | 86.3           |
| dg.min.basin_certain.mean                             | 87.1           |
| dg.min.basin_uncertain.min                            | 88.1           |
| dg.mean.basin_prob.mean                               | 88.8<br>89.7   |
| dg.min.basin_uncertain.max                            | 91.0           |
| dg.min.basin_certain.sum                              | 92.3           |
| dg.mean.basin_uncertain.median                        | 92.4<br>93 3   |
| dg.mean.uncertain                                     | 94.8           |
| dg.mean.basin_uncertain.max                           | 96.0           |
| dg.min.basin_uncertain.sum                            | 96.4<br>96.7   |
| dg.near.uncertain                                     | 96.7           |
| dcc.concave.hard                                      | 96.9           |
| dg.mean.basin_certain.mean                            | 97.9<br>98.7   |
| dg.near.basin_certain.sum                             | 99.2           |
| dg.mean.basin_uncertain.sum                           | 99.3           |
| dg.near.attractors                                    | 100.9          |
| dg.mean.basin_uncertain.min                           | 101.2          |
| dg.mean.basin_certain.median                          | 101.7          |
| dg.near.basin_prob.mean                               | 104.0          |
| dg.near.basin_certain.median                          | 104.7          |
| dg.min.pcells                                         | 104.8          |
| dg.near.basin_uncertain.mean                          | 105.0          |
| dg.near.pcells                                        | 105.5          |
| dg.mean.basin_certain.sum                             | 106.2          |
| dg.min.basin_certain.min<br>dg near basin certain may | 106.7          |
| dg.mean.tcells                                        | 109.3          |
| dg.mean.basin_certain.max                             | 109.4          |
| dg near basin certain min                             | 111.6<br>113.0 |
| dg.mean.basin_certain.min                             | 114.1          |
| dg.mean.pcells                                        | 118.1          |
| ug.mean.attractors                                    | 118.8          |

| Table S.7: Average accura | cy of C7-D2 with different | $m$ for $n \in \mathbb{R}$ | {3, 5, 1 | 10, 20, 40, 80 | 0, 160, 320, 640 | } |
|---------------------------|----------------------------|----------------------------|----------|----------------|------------------|---|
|---------------------------|----------------------------|----------------------------|----------|----------------|------------------|---|

|            | Table S.7: Average accuracy of C7-D2 with different <i>m</i> for $n \in \{3, 5, 10, 20, 40, 80, 160, 320, 640\}$ . |                                |                              |                                |                              |            |                                  |                                |                              |                              |                                         |
|------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------|------------------------------|------------|----------------------------------|--------------------------------|------------------------------|------------------------------|-----------------------------------------|
|            |                                                                                                                    | (a) M                          | Iultimodality                | ·                              |                              |            | -                                | (b) G                          | lobal structure              |                              |                                         |
|            | m = 1                                                                                                              | <i>m</i> = 2                   | <i>m</i> = 3                 | <i>m</i> = 5                   | <i>m</i> = 10                |            | m = 1                            | m = 2                          | <i>m</i> = 3                 | <i>m</i> = 5                 | <i>m</i> = 10                           |
| 5          | 0.611 (0.422)                                                                                                      | 0.622 (0.415)                  | 0.650 (0.432)                | Na                             | Na                           | 5          | 0.769 (0.395)                    | 0.761 (0.412)                  | 0.764 (0.402)                | Na                           | Na                                      |
| 10         | 0.583 (0.439)                                                                                                      | 0.647 (0.434)                  | 0.628 (0.425)                | 0.572 (0.415)                  | Na                           | 10         | 0.700 (0.437)                    | 0.692 (0.435)                  | 0.703 (0.435)                | 0.686 (0.451)                | Na                                      |
| 20         | 0.617 (0.415)                                                                                                      | 0.639 (0.413)                  | 0.653 (0.425)                | 0.647 (0.433)                  | 0.631 (0.430)                | 20         | 0.717 (0.421)                    | 0.697 (0.440)                  | 0.714 (0.425)                | 0.717 (0.429)                | 0.728 (0.421)                           |
| 40         | 0.603 (0.448)                                                                                                      | 0.617 (0.441)                  | 0.589 (0.434)                | 0.589 (0.438)                  | 0.600 (0.429)                | 40         | 0.711 (0.460)                    | 0.711 (0.460)                  | 0.714 (0.456)                | 0.714 (0.456)                | 0.711 (0.460)                           |
| 80         | 0.625 (0.455)                                                                                                      | 0.622 (0.454)                  | 0.625 (0.451)                | 0.631 (0.459)                  | 0.631 (0.444)                | 80         | 0.694 (0.452)                    | 0.697 (0.453)                  | 0.697 (0.453)                | 0.694 (0.453)                | 0.697 (0.453)                           |
| 160        | 0.544(0.477)                                                                                                       | 0.561(0.475)                   | 0.556(0.477)                 | 0.592(0.472)                   | 0.547(0.474)                 | 160        | 0.622(0.471)                     | 0.631(0.463)                   | 0.633(0.462)                 | 0.628 (0.469)                | 0.628(0.469)                            |
| 520<br>640 | 0.575(0.482)                                                                                                       | 0.578 (0.472)                  | 0.380(0.471)<br>0.581(0.488) | 0.392(0.472)<br>0.583(0.488)   | 0.372(0.474)<br>0.575(0.483) | 520<br>640 | 0.004(0.480)<br>0.672(0.474)     | 0.007 (0.462)<br>0.678 (0.468) | 0.004(0.480)<br>0.675(0.471) | 0.004(0.480)<br>0.675(0.471) | 0.601(0.478)                            |
| 040        | 0.580 (0.478)                                                                                                      | 0.363 (0.467)                  | 0.301 (0.400)                | 0.303 (0.400)                  | 0.575 (0.465)                | 040        | 0.072 (0.474)                    | 0.078 (0.408)                  | 0.075 (0.471)                | 0.075 (0.471)                | 0.075 (0.471)                           |
|            |                                                                                                                    | (c)                            | Separability                 |                                |                              |            |                                  | (d) V                          | ariable scaling              |                              |                                         |
|            | m = 1                                                                                                              | m = 2                          | <i>m</i> = 3                 | <i>m</i> = 5                   | <i>m</i> = 10                |            | m = 1                            | m = 2                          | <i>m</i> = 3                 | <i>m</i> = 5                 | m = 10                                  |
| 5          | 0.783 (0.374)                                                                                                      | 0.761 (0.421)                  | 0.764 (0.400)                | Na                             | Na                           | 5          | 0.586 (0.475)                    | 0.594 (0.480)                  | 0.592 (0.478)                | Na                           | Na                                      |
| 10         | 0.761 (0.408)                                                                                                      | 0.753 (0.411)                  | 0.750 (0.415)                | 0.758 (0.408)                  | Na                           | 10         | 0.564 (0.492)                    | 0.572 (0.496)                  | 0.556 (0.490)                | 0.528 (0.494)                | Na                                      |
| 20         | 0.736 (0.402)                                                                                                      | 0.744 (0.401)                  | 0.750 (0.403)                | 0.728 (0.425)                  | 0.717 (0.433)                | 20         | 0.578 (0.499)                    | 0.583 (0.504)                  | 0.583 (0.504)                | 0.575 (0.498)                | 0.542 (0.509)                           |
| 40         | 0.758 (0.400)                                                                                                      | 0.758 (0.401)                  | 0.758 (0.398)                | 0.756 (0.399)                  | 0.750 (0.404)                | 40         | 0.542 (0.499)                    | 0.556 (0.492)                  | 0.550 (0.494)                | 0.550 (0.494)                | 0.544 (0.497)                           |
| 80         | 0.681 (0.454)                                                                                                      | 0.686 (0.447)                  | 0.683 (0.455)                | 0.683 (0.452)                  | 0.689 (0.449)                | 80         | 0.539 (0.507)                    | 0.581 (0.501)                  | 0.583 (0.504)                | 0.567 (0.496)                | 0.583 (0.504)                           |
| 160        | 0.669(0.472)                                                                                                       | 0.667 (0.476)                  | 0.672 (0.468)                | 0.667 (0.476)                  | 0.669 (0.472)                | 160        | 0.567 (0.496)                    | 0.583 (0.504)                  | 0.583 (0.504)                | 0.583 (0.504)                | 0.583 (0.504)                           |
| 520<br>640 | 0.672(0.474)<br>0.694(0.419)                                                                                       | 0.669 (0.467)                  | 0.669(0.472)<br>0.658(0.460) | 0.661(0.472)<br>0.775(0.390)   | 0.672(0.468)<br>0.781(0.400) | 520<br>640 | $0.547 (0.495) \\ 0.542 (0.509)$ | 0.583(0.504)<br>0.542(0.509)   | 0.583(0.504)<br>0.542(0.509) | 0.583(0.504)<br>0.542(0.509) | 0.585(0.504)<br>0.569(0.496)            |
| 040        | 0.074 (0.417)                                                                                                      | 0.007 (0.455)                  | 0.058 (0.400)                | 0.775 (0.570)                  | 0.781 (0.400)                | 040        | 0.342 (0.307)                    | 0.342 (0.307)                  | 0.342 (0.307)                | 0.342 (0.307)                | 0.307 (0.470)                           |
|            |                                                                                                                    | (e) I                          | lomogeneity                  |                                |                              |            |                                  | (f                             | ) Basin size                 |                              |                                         |
|            | m = 1                                                                                                              | <i>m</i> = 2                   | <i>m</i> = 3                 | <i>m</i> = 5                   | <i>m</i> = 10                |            | m = 1                            | <i>m</i> = 2                   | <i>m</i> = 3                 | <i>m</i> = 5                 | <i>m</i> = 10                           |
| 5          | 0.669 (0.418)                                                                                                      | 0.647 (0.408)                  | 0.664 (0.410)                | Na                             | Na                           | 5          | 0.525 (0.386)                    | 0.522 (0.373)                  | 0.517 (0.375)                | Na                           | Na                                      |
| 10         | 0.767 (0.341)                                                                                                      | 0.769 (0.338)                  | 0.758 (0.345)                | 0.758 (0.350)                  | Na                           | 10         | 0.603 (0.376)                    | 0.636 (0.384)                  | 0.642 (0.365)                | 0.581 (0.372)                | Na                                      |
| 20         | 0.775 (0.376)                                                                                                      | 0.731 (0.403)                  | 0.731 (0.396)                | 0.717 (0.424)                  | 0.736 (0.402)                | 20         | 0.536 (0.404)                    | 0.558 (0.409)                  | 0.569 (0.403)                | 0.581 (0.405)                | 0.533 (0.421)                           |
| 40         | 0.811 (0.325)                                                                                                      | 0.744 (0.407)                  | 0.744 (0.413)                | 0.739 (0.412)                  | 0.731 (0.414)                | 40         | 0.586 (0.431)                    | 0.614 (0.423)                  | 0.608 (0.421)                | 0.619 (0.409)                | 0.608 (0.424)                           |
| 80         | 0.717(0.431)                                                                                                       | 0.742(0.412)                   | 0.717(0.419)                 | 0.678 (0.448)                  | 0.675(0.452)                 | 80         | 0.594 (0.466)                    | 0.597 (0.460)                  | 0.600 (0.465)                | 0.583(0.4/1)                 | 0.583 (0.467)                           |
| 320        | 0.078(0.444)<br>0.742(0.438)                                                                                       | 0.083(0.439)<br>0.761(0.417)   | 0.009(0.430)<br>0.747(0.441) | 0.073(0.439)                   | 0.030(0.434)<br>0.739(0.438) | 320        | 0.011(0.430)<br>0.497(0.461)     | 0.014(0.447)<br>0.508(0.446)   | 0.528 (0.452)                | 0.028(0.444)<br>0.511(0.454) | 0.019(0.439)<br>0.500(0.456)            |
| 640        | 0.742 (0.450)                                                                                                      | 0.781 (0.411)                  | 0.742 (0.423)                | 0.739 (0.438)                  | 0.781 (0.410)                | 640        | 0.511 (0.468)                    | 0.528 (0.471)                  | 0.511 (0.467)                | 0.522 (0.474)                | 0.517 (0.474)                           |
|            |                                                                                                                    | (11)                           | (111)                        | (                              | (,                           |            | (111)                            | (,                             | (111)                        | (,                           | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|            |                                                                                                                    | (g)                            | GL contrast                  |                                |                              |            |                                  | (h) O                          | verall average               |                              |                                         |
|            | m = 1                                                                                                              | <i>m</i> = 2                   | <i>m</i> = 3                 | <i>m</i> = 5                   | <i>m</i> = 10                |            | m = 1                            | m = 2                          | <i>m</i> = 3                 | <i>m</i> = 5                 | m = 10                                  |
| 5          | 0.536 (0.414)                                                                                                      | 0.536 (0.411)                  | 0.522 (0.426)                | Na                             | Na                           | 5          | 0.640 (0.417)                    | 0.635 (0.420)                  | 0.639 (0.422)                | Na                           | Na                                      |
| 10         | 0.600 (0.413)                                                                                                      | 0.619 (0.410)                  | 0.619 (0.405)                | 0.617 (0.404)                  | Na                           | 10         | 0.654 (0.418)                    | 0.670 (0.415)                  | 0.665 (0.412)                | 0.643 (0.417)                | Na                                      |
| 20         | 0.628 (0.383)                                                                                                      | 0.617 (0.384)                  | 0.636 (0.394)                | 0.600 (0.407)                  | 0.619 (0.408)                | 20         | 0.655 (0.417)                    | 0.653 (0.421)                  | 0.662 (0.420)                | 0.652 (0.429)                | 0.644 (0.433)                           |
| 40         | 0.583(0.430)                                                                                                       | 0.597 (0.428)                  | 0.578 (0.433)                | 0.594(0.436)                   | 0.589 (0.439)                | 40         | 0.656(0.434)                     | 0.657 (0.436)                  | 0.649 (0.436)                | 0.652(0.435)                 | 0.648(0.438)                            |
| 60<br>160  | 0.622(0.459)                                                                                                       | 0.619(0.458)                   | 0.017 (0.400)                | 0.608 (0.457)                  | 0.392 (0.447)                | ðU<br>140  | 0.039 (0.450)                    | 0.649(0.451)<br>0.623(0.458)   | 0.640 (0.453)                | 0.635 (0.457)                | 0.615 (0.454)                           |
| 320        | 0.031(0.446)<br>0.653(0.459)                                                                                       | 0.022 (0.445)<br>0.647 (0.436) | 0.008 (0.435)                | 0.008 (0.442)<br>0.639 (0.440) | 0.000(0.444)<br>0.639(0.440) | 320        | 0.017 (0.400)<br>0.621 (0.468)   | 0.623 (0.438)                  | 0.020(0.438)<br>0.629(0.461) | 0.628(0.460)                 | 0.013(0.439)<br>0.624(0.463)            |
| 640        | 0.589 (0.492)                                                                                                      | 0.614(0.473)                   | 0.633 (0.473)                | 0.631 (0.482)                  | 0.594 (0.481)                | 640        | 0.626 (0.466)                    | 0.628 (0.467)                  | 0.620 (0.468)                | 0.638 (0.466)                | 0.642 (0.463)                           |
|            | (                                                                                                                  | (                              | (111)()                      | (                              | (                            |            | (                                | (                              | (                            | (                            | (                                       |

|     | (a) N         | Iultimodality |               |     | (b) G         | lobal structure |               |
|-----|---------------|---------------|---------------|-----|---------------|-----------------|---------------|
|     | <i>m</i> = 2  | <i>m</i> = 3  | <i>m</i> = 5  |     | <i>m</i> = 2  | <i>m</i> = 3    | <i>m</i> = 5  |
| 5   | 0.522 (0.423) | 0.550 (0.436) | Na            | 5   | 0.778 (0.400) | 0.772 (0.408)   | Na            |
| 10  | 0.561 (0.414) | 0.558 (0.425) | 0.544 (0.419) | 10  | 0.719 (0.426) | 0.728 (0.412)   | 0.728 (0.424) |
| 20  | 0.550 (0.436) | 0.525 (0.434) | 0.536 (0.419) | 20  | 0.733 (0.416) | 0.733 (0.412)   | 0.733 (0.413) |
| 40  | 0.564 (0.449) | 0.567 (0.456) | 0.575 (0.450) | 40  | 0.714 (0.456) | 0.717 (0.448)   | 0.722 (0.447) |
| 80  | 0.544 (0.436) | 0.567 (0.442) | 0.578 (0.440) | 80  | 0.706 (0.440) | 0.708 (0.441)   | 0.714 (0.437) |
| 160 | 0.528 (0.445) | 0.533 (0.450) | 0.547 (0.439) | 160 | 0.656 (0.453) | 0.661 (0.453)   | 0.667 (0.448) |
| 320 | 0.542 (0.472) | 0.553 (0.474) | 0.542 (0.473) | 320 | 0.664 (0.474) | 0.661 (0.478)   | 0.669 (0.478) |
| 640 | 0.536 (0.466) | 0.528 (0.462) | 0.506 (0.468) | 640 | 0.683 (0.461) | 0.683 (0.461)   | 0.678 (0.464) |

**Table S.8:** Average accuracy of C7-D4 with different *m* for  $n \in \{5, 10, 20, 40, 80, 160, 320, 640\}$ .

| (c) | Separability |       |   |
|-----|--------------|-------|---|
| 2   | m - 3        | m = 5 | _ |

|     | m = 2         | <i>m</i> = 3  | <i>m</i> = 5  |     | <i>m</i> = 2  | <i>m</i> = 3  | <i>m</i> = 5  |
|-----|---------------|---------------|---------------|-----|---------------|---------------|---------------|
| 5   | 0.761 (0.409) | 0.769 (0.417) | Na            | 5   | 0.636 (0.469) | 0.633 (0.464) | Na            |
| 10  | 0.758 (0.414) | 0.767 (0.413) | 0.772 (0.413) | 10  | 0.528 (0.486) | 0.536 (0.482) | 0.542 (0.478) |
| 20  | 0.731 (0.410) | 0.739 (0.408) | 0.722 (0.414) | 20  | 0.536 (0.504) | 0.531 (0.501) | 0.539 (0.507) |
| 40  | 0.775 (0.402) | 0.778 (0.399) | 0.769 (0.395) | 40  | 0.533 (0.490) | 0.550 (0.497) | 0.553 (0.496) |
| 80  | 0.719 (0.425) | 0.722 (0.423) | 0.711 (0.431) | 80  | 0.581 (0.501) | 0.583 (0.504) | 0.581 (0.501) |
| 160 | 0.708(0.440)  | 0.719 (0.436) | 0.725 (0.436) | 160 | 0.583 (0.504) | 0.583 (0.504) | 0.583 (0.504) |
| 320 | 0.731 (0.433) | 0.733 (0.431) | 0.725 (0.432) | 320 | 0.544 (0.506) | 0.547 (0.504) | 0.558 (0.497) |
| 640 | 0.744 (0.413) | 0.739 (0.419) | 0.753 (0.412) | 640 | 0.542 (0.509) | 0.542 (0.509) | 0.542 (0.509) |

(d) Variable scaling

|     | (e) I         | Iomogeneity   |               |     | (f            | ) Basin size  |               |
|-----|---------------|---------------|---------------|-----|---------------|---------------|---------------|
|     | <i>m</i> = 2  | <i>m</i> = 3  | <i>m</i> = 5  |     | <i>m</i> = 2  | <i>m</i> = 3  | <i>m</i> = 5  |
| 5   | 0.636 (0.412) | 0.636 (0.421) | Na            | 5   | 0.478 (0.403) | 0.489 (0.403) | Na            |
| 10  | 0.706 (0.395) | 0.697 (0.397) | 0.694 (0.410) | 10  | 0.531 (0.388) | 0.506 (0.401) | 0.508 (0.403) |
| 20  | 0.769 (0.367) | 0.775 (0.359) | 0.764 (0.360) | 20  | 0.483 (0.425) | 0.481 (0.432) | 0.497 (0.437) |
| 40  | 0.781 (0.368) | 0.786 (0.361) | 0.789 (0.356) | 40  | 0.533 (0.440) | 0.528 (0.441) | 0.525 (0.444) |
| 80  | 0.706 (0.434) | 0.733 (0.414) | 0.742 (0.418) | 80  | 0.519 (0.448) | 0.528 (0.457) | 0.508 (0.471) |
| 160 | 0.656(0.465)  | 0.667 (0.449) | 0.678 (0.444) | 160 | 0.472 (0.459) | 0.475 (0.454) | 0.483 (0.457) |
| 320 | 0.772 (0.408) | 0.778 (0.410) | 0.761 (0.410) | 320 | 0.400(0.478)  | 0.403 (0.476) | 0.406 (0.476) |
| 640 | 0.758 (0.424) | 0.758 (0.424) | 0.747 (0.435) | 640 | 0.492 (0.475) | 0.483 (0.479) | 0.492 (0.477) |

|     | (g)           | GL contrast   |               |     | (h) 0         | verall average |               |
|-----|---------------|---------------|---------------|-----|---------------|----------------|---------------|
|     | <i>m</i> = 2  | <i>m</i> = 3  | <i>m</i> = 5  |     | <i>m</i> = 2  | <i>m</i> = 3   | <i>m</i> = 5  |
| 5   | 0.503 (0.407) | 0.508 (0.408) | Na            | 5   | 0.616 (0.426) | 0.623 (0.429)  | Na            |
| 10  | 0.592 (0.419) | 0.569 (0.398) | 0.561 (0.409) | 10  | 0.628 (0.423) | 0.623 (0.423)  | 0.621 (0.427) |
| 20  | 0.558 (0.410) | 0.544 (0.410) | 0.542 (0.412) | 20  | 0.623 (0.432) | 0.618 (0.432)  | 0.619 (0.431) |
| 40  | 0.522 (0.417) | 0.508 (0.416) | 0.508 (0.417) | 40  | 0.632 (0.440) | 0.633 (0.440)  | 0.635 (0.438) |
| 80  | 0.553 (0.446) | 0.567 (0.444) | 0.558 (0.443) | 80  | 0.618 (0.447) | 0.630 (0.447)  | 0.627 (0.450) |
| 160 | 0.547 (0.440) | 0.536 (0.443) | 0.547 (0.444) | 160 | 0.593 (0.457) | 0.596 (0.455)  | 0.604 (0.453) |
| 320 | 0.550 (0.473) | 0.558 (0.474) | 0.550 (0.478) | 320 | 0.600 (0.471) | 0.605 (0.471)  | 0.602 (0.470) |
| 640 | 0.544(0.486)  | 0.561 (0.480) | 0.561 (0.478) | 640 | 0.614 (0.466) | 0.613 (0.466)  | 0.611 (0.467) |



S.5: Figure **Boxplots** of values of ela\_meta.lin\_simple.adj\_r2 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with *n* = 160.



(a) ela\_meta.lin\_simple.intercept (b) d\_ela\_meta.lin\_simple.intercept

Figure S.6: Boxplots of values of ela\_meta.lin\_simple.intercept and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$ with *n* = 160.



(a) ela\_meta.lin\_simple.coef.min (b) d\_ela\_meta.lin\_simple.coef.min

Figure **S.7**: Boxplots of values of ela\_meta.lin\_simple.coef.min and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$ with *n* = 160.



(a) ela\_meta.lin\_simple.coef.max (b) d\_ela\_meta.lin\_simple.coef.max

**S.8**: Figure **Boxplots** of values of ela\_meta.lin\_simple.coef.max and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$ with *n* = 160.



(a) (b)
ela\_meta.lin\_simple.coef.max\_by\_mind\_ela\_meta.lin\_simple.coef.max\_by\_min

**S.9**: **Boxplots** of of Figure values ela\_meta.lin\_simple.coef.max\_by\_min and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 160.



Figure **Boxplots** S.10: of values of ela\_meta.lin\_w\_interact.adj\_r2 and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.11: Boxplots of values of ela\_meta.quad\_simple.adj\_r2 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.12: Boxplots of values of ela\_meta.quad\_simple.cond and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



 $\begin{array}{c} (a) \texttt{ela\_meta.quad\_w\_interact.adj\_r2} (b) \\ \texttt{d\_ela\_meta.quad\_w\_interact.adj\_r2} \end{array}$ 

Figure S.13: Boxplots of values of ela\_meta.quad\_w\_interact.adj\_r2 and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.14: Boxplots of values of ela\_meta.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.15: Boxplots of values of ela\_meta.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.16: Boxplots of values of ela\_level.mmce\_lda\_10 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.17: Boxplots of values of ela\_level.mmce\_qda\_10 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.18: Boxplots of values of ela\_level.mmce\_mda\_10 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.19: Boxplots of values of ela\_level.lda\_qda\_10 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.20: Boxplots of values of ela\_level.lda\_mda\_10 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.21: Boxplots of values of ela\_level.qda\_mda\_10 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.22: Boxplots of values of ela\_level.mmce\_lda\_25 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.23: Boxplots of values of ela\_level.mmce\_qda\_25 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.24: Boxplots of values of ela\_level.mmce\_mda\_25 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.25: Boxplots of values of ela\_level.lda\_qda\_25 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.26: Boxplots of values of ela\_level.lda\_mda\_25 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.27: Boxplots of values of ela\_level.qda\_mda\_25 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.28: Boxplots of values of ela\_level.mmce\_lda\_50 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.29: Boxplots of values of ela\_level.mmce\_qda\_50 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.30: Boxplots of values of ela\_level.mmce\_mda\_50 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.31: Boxplots of values of ela\_level.lda\_qda\_50 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.32: Boxplots of values of ela\_level.lda\_mda\_50 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.33: Boxplots of values of ela\_level.qda\_mda\_50 and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.34: Boxplots of values of ela\_level.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.35: Boxplots of values of ela\_level.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 160.



Figure S.36: Boxplots of values of cm\_grad.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.37: Boxplots of values of cm\_grad.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.38: Boxplots of values of cm\_grad.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.39: Boxplots of values of cm\_grad.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb| cm_angle.dist_ctr2best.mean (b) d_cm_angle.dist_ctr2best.mean \\$ 

Figure S.40: Boxplots of values of cm\_angle.dist\_ctr2best.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.41: Boxplots of values of cm\_angle.dist\_ctr2best.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb| cm_angle.dist_ctr2worst.mean (b) d_cm_angle.dist_ctr2worst.mean \\$ 

Figure S.42: Boxplots of values of cm\_angle.dist\_ctr2worst.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb"cm_angle.dist_ctr2worst.sd" (b) \verb"d_cm_angle.dist_ctr2worst.sd" (b) \verb"d_cm_angle.dist_ctr2worst.sd" (b) \verb"d_cm_angle.dist_ctr2worst.sd" (c) "d_cm_angle.dist_ctr2worst.sd" (c) "$ 

Figure S.43: Boxplots of values of cm\_angle.dist\_ctr2worst.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.44: Boxplots of values of cm\_angle.angle.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.45: Boxplots of values of cm\_angle.angle.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



d\_cm\_angle.y\_ratio\_best2worst.mean

Figure S.46: Boxplots of values of cm\_angle.y\_ratio\_best2worst.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



d\_cm\_angle.y\_ratio\_best2worst.sd

Figure S.47: Boxplots of values of cm\_angle.y\_ratio\_best2worst.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.48: Boxplots of values of cm\_angle.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.49: Boxplots of values of cm\_angle.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.50: Boxplots of values of cm\_conv.convex.hard and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.51: Boxplots of values of cm\_conv.concave.hard and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.52: Boxplots of values of cm\_conv.convex.soft and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.53: Boxplots of values of cm\_conv.concave.soft and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.54: Boxplots of values of cm\_conv.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.55: Boxplots of values of cm\_conv.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.56: Boxplots of values of gcm.min.attractors and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.57: Boxplots of values of gcm.min.pcells and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.58: Boxplots of values of gcm.min.tcells and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.59: Boxplots of values of gcm.min.uncertain and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.60: Boxplots of values of gcm.min.basin\_prob.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.61: Boxplots of values of gcm.min.basin\_prob.mean and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.62: Boxplots of values of gcm.min.basin\_prob.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.63: Boxplots of values of gcm.min.basin\_prob.max and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.64: Boxplots of values of gcm.min.basin\_prob.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.65: Boxplots of values of gcm.min.basin\_certain.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.66: Boxplots of values of gcm.min.basin\_certain.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb"gcm.min.basin_certain.median" (b) d\_gcm.min.basin_certain.median"$ 

Figure S.67: Boxplots of values of gcm.min.basin\_certain.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.68: Boxplots of values of gcm.min.basin\_certain.max and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.69: Boxplots of values of gcm.min.basin\_certain.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.70: Boxplots of values of gcm.min.basin\_certain.sum and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.71: Boxplots of values of gcm.min.basin\_uncertain.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.min.basin\_uncertain.mean (b) d\_gcm.min.basin\_uncertain.mean

Figure S.72: Boxplots of values of gcm.min.basin\_uncertain.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $\begin{array}{ll} \text{(a) gcm.min.basin\_uncertain.median (b)} \\ & & \text{d\_gcm.min.basin\_uncertain.median} \end{array}$ 

Figure S.73: Boxplots of values of gcm.min.basin\_uncertain.median and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.74: Boxplots of values of gcm.min.basin\_uncertain.max and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.75: Boxplots of values of gcm.min.basin\_uncertain.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb"gcm.min.basin\_uncertain.sum" (b) \verb"d\_gcm.min.basin\_uncertain.sum" (b) \verb"d\_gcm.min.basin\_uncertain.sum" (b) \verb"d\_gcm.min.basin\_uncertain.sum" (c) \verb"d"gcm.min.basin\_uncertain.sum" (c) "d"gcm.min.basin\_uncertain.sum" (c) "d"gcm.min.basin\_uncer$ 

Figure S.76: Boxplots of values of gcm.min.basin\_uncertain.sum and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.77: Boxplots of values of gcm.min.best\_attr.prob and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.78: Boxplots of values of gcm.min.best\_attr.no and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.79: Boxplots of values of gcm.min.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.80: Boxplots of values of gcm.min.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.81: Boxplots of values of gcm.mean.attractors and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.82: Boxplots of values of gcm.mean.pcells and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.83: Boxplots of values of gcm.mean.tcells and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.84: Boxplots of values of gcm.mean.uncertain and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.85: Boxplots of values of gcm.mean.basin\_prob.min and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.86: Boxplots of values of gcm.mean.basin\_prob.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.87: Boxplots of values of gcm.mean.basin\_prob.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.88: Boxplots of values of gcm.mean.basin\_prob.max and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.89: Boxplots of values of gcm.mean.basin\_prob.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.90: Boxplots of values of gcm.mean.basin\_certain.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.91: Boxplots of values of gcm.mean.basin\_certain.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.mean.basin\_certain.median (b) d\_gcm.mean.basin\_certain.median

Figure S.92: Boxplots of values of gcm.mean.basin\_certain.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.mean.basin\_certain.max (b) d\_gcm.mean.basin\_certain.max

Figure S.93: Boxplots of values of gcm.mean.basin\_certain.max and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.94: Boxplots of values of gcm.mean.basin\_certain.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.95: Boxplots of values of gcm.mean.basin\_certain.sum and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.mean.basin\_uncertain.min (b) d\_gcm.mean.basin\_uncertain.min

Figure S.96: Boxplots of values of gcm.mean.basin\_uncertain.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb"gcm.mean.basin_uncertain.mean" (b) \verb"d_gcm.mean.basin_uncertain.mean" (b) \verb"d_gcm.mean.basin_uncertain.mean" (b) \verb"d_gcm.mean.basin_uncertain.mean" (c) \verb"d_gcm.mean.basin_uncertain.basin_uncertain.mean" (c) \verb"d_gcm.mean.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.basin_uncertain.b$ 

Figure S.97: Boxplots of values of gcm.mean.basin\_uncertain.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a)gcm.mean.basin\_uncertain.median(b)

d\_gcm.mean.basin\_uncertain.median

Figure S.98: Boxplots of values of gcm.mean.basin\_uncertain.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.mean.basin\_uncertain.max (b) d\_gcm.mean.basin\_uncertain.max

Figure S.99: Boxplots of values of gcm.mean.basin\_uncertain.max and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb"gcm.mean.basin\_uncertain.sd" (b) \verb"d_gcm.mean.basin\_uncertain.sd"$ 

Figure S.100: Boxplots of values of gcm.mean.basin\_uncertain.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.101: Boxplots of values of gcm.mean.basin\_uncertain.sum and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$ 

with n = 5.



Figure S.102: Boxplots of values of gcm.mean.best\_attr.prob and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.103: Boxplots of values of gcm.mean.best\_attr.no and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.104: Boxplots of values of gcm.mean.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.105: Boxplots of values of gcm.mean.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.106: Boxplots of values of gcm.near.attractors and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.107: Boxplots of values of gcm.near.pcells and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.108: Boxplots of values of gcm.near.tcells and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.109: Boxplots of values of gcm.near.uncertain and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.110: Boxplots of values of gcm.near.basin\_prob.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.111: Boxplots of values of gcm.near.basin\_prob.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.basin\_prob.median

(b) d\_gcm.near.basin\_prob.median

Figure S.112: Boxplots of values of gcm.near.basin\_prob.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.113: Boxplots of values of gcm.near.basin\_prob.max and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.114: Boxplots of values of gcm.near.basin\_prob.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.115: Boxplots of values of gcm.near.basin\_certain.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.116: Boxplots of values of gcm.near.basin\_certain.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.basin\_certain.median (b) d\_gcm.near.basin\_certain.median

Figure S.117: Boxplots of values of gcm.near.basin\_certain.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.basin\_certain.max (b) d\_gcm.near.basin\_certain.max

Figure S.118: Boxplots of values of gcm.near.basin\_certain.max and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.119: Boxplots of values of gcm.near.basin\_certain.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.120: Boxplots of values of gcm.near.basin\_certain.sum and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



 $(a) \verb"gcm.near.basin\_uncertain.min" (b) d\_gcm.near.basin\_uncertain.min"$ 

Figure S.121: Boxplots of values of gcm.near.basin\_uncertain.min and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.basin\_uncertain.mean (b) d\_gcm.near.basin\_uncertain.mean

Figure S.122: Boxplots of values of gcm.near.basin\_uncertain.mean and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



d\_gcm.near.basin\_uncertain.median

Figure S.123: Boxplots of values of gcm.near.basin\_uncertain.median and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.basin\_uncertain.max (b) d\_gcm.near.basin\_uncertain.max

Figure S.124: Boxplots of values of gcm.near.basin\_uncertain.max and its dimensionality reduction version on 15 instances of  $f_1, f_6, f_{10}, f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.125: Boxplots of values of gcm.near.basin\_uncertain.sd and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.basin\_uncertain.sum (b) d\_gcm.near.basin\_uncertain.sum

Figure S.126: Boxplots of values of gcm.near.basin\_uncertain.sum and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.127: Boxplots of values of gcm.near.best\_attr.prob and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.128: Boxplots of values of gcm.near.best\_attr.no and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



(a) gcm.near.costs\_fun\_evals (b) d\_gcm.near.costs\_fun\_evals

Figure S.129: Boxplots of values of gcm.near.costs\_fun\_evals and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.130: Boxplots of values of gcm.near.costs\_runtime and its dimensionality reduction version on 15 instances of  $f_1$ ,  $f_6$ ,  $f_{10}$ ,  $f_{15}$ , and  $f_{20}$  with n = 5.



Figure S.131: Kendall  $\tau$  values of ela\_level and d\_ela\_level for n = 160.



Figure S.132: Kendall  $\tau$  values of gcm and d\_gcm for n = 5.



Figure S.133: Kendall  $\tau$  values of cm\_angle and d\_cm\_angle for n = 5.



Figure S.134: Kendall  $\tau$  values of cm\_conv and d\_cm\_conv for n=5.



Figure S.135: Kendall  $\tau$  values of cm\_grad and d\_cm\_grad for n = 5.