Analyzing the Landscape of the Indicator-based Subset Selection Problem

Keisuke Korogi, Ryoji Tanabe

Yokohama National University Yokohama, Japan

Indicator-based Subset Selection Problem (ISSP)

- Select a solution subset that optimizes an indicator
- ▶ The indicator evaluates how well solutions approximate the PF
- ▶ It is a binary combinatorial optimization problem
- Case 1: Postprocessing of an unbounded external archive (UA)
 - ▶ UA stores all non-dominated solutions found in the search
 - ► Hard to examine a large-size UA 🛎
 - ► ISSP can reduce the decision maker's burden ⓒ
- Case 2: Environmental Selection in Indicator-based EMO

Mathematical Formulation of the ISSP

- ightharpoonup A d-objective space $V \subset \mathbb{R}^d$
- ▶ A point set $P \subset V$ of size n
- ► A subset size *k* to be selected
- ▶ A quality indicator $\mathcal{I}: 2^V \to \mathbb{R}$
- ▶ Find $S^* \subset P$ such that:

$$S^* = \underset{S \subset P, |S| = k}{\operatorname{argmin}} \, \mathcal{I}(S)$$

- ightharpoonup e.g., the HV-SSP and ϵ -SSP
- ► The ISSP is NP-hard

This Work: Landscape Analysis of the ISSP

- lt provides a better understanding of a problem, which helpful for
 - Designing efficient optimization algorithms
 - Examining the behavior of optimization algorithms
- No previous study analyzed the landscape of the ISSP
 - Previous studies focused mainly on designing efficient subset selection methods
- Contribution:

The first study to analyze the landscape of the ISSP

- ► How the landscape is influenced by the choice of
 - a quality indicator and
 - the shape of the Pareto front

Seven quality indicators

- ► Seven quality indicators
- ► Seven PF shapes from the DTLZ test suite

- Seven quality indicators
- ► Seven PF shapes from the DTLZ test suite
- ▶ Number of objectives d = 3
- Point set size n = 50
- ▶ Point subset size k = 5

We used small values, but

 $n \approx 100\,000$ and $k \approx 100$ in practice

- ▶ Enumerate all possible $\binom{n}{k} = 2118760$ subsets
- Compute exact statistics
- Construct exact local optima networks

- Seven quality indicators
- ▶ Seven PF shapes from the DTLZ test suite
- ▶ Number of objectives d = 3
- ightharpoonup Point set size n=50
- ▶ Point subset size k = 5
- ▶ Enumerate all possible $\binom{n}{k} = 2118760$ subsets
- Compute exact statistics
- Construct exact local optima networks

Distribution of Quality Indicator Values

- ► Lin, Conv, Non-Conv, Inv-Lin, Inv-Conv, Inv-Non-Conv, Discon
- Quality indicator values are normalized and to be minimized

Distribution of Quality Indicator Values

Many good subsets are found in the IGD-SSP and SE-SSP

Distribution of Quality Indicator Values

▶ Many subsets have poor quality in the R2-SSP and ϵ -SSP

Correlation between Two ISSPs

- \blacktriangleright High correlation are observed in the HV-NR2 and IGD⁺- ϵ
- ▶ The rationale for using NR2-SSP as an alternative to HV-SSP

^{*}Ke Shang, Hisao Ishibuchi, and Weiyu Chen, "Greedy approximated hypervolume subset selection for many-objective optimization", GECCO, 2021.

Number of Global Optima (Plateaus)

- ▶ *Plateau*: a set of connected solutions with the same quality
- ▶ Diamonds (bars): number of global optima (plateaus)
- ▶ There are many global optima in ϵ -SSP

Number of Local Optima (Plateaus)

- Diamonds (bars): number of local optima (plateaus)
- ▶ The ϵ -SSP is multimodal and hard-to-solve for LS
- ▶ The other ISSPs are unimodal or weak multimodal

FDC with the Distance in Genotype Space

- ► Corr. between distance to global optimum and indicator values
- ► Small FDC values are observed in most cases

FDC with the Distance in Phenotype Space

- Minimum cost to transport one point set to another
- ► Strong global structures can be observed

Validity of a Candidate List Strategy

► LS with **phenotype distance-based** candidate list strategy*

^{*}Keisuke Korogi and Ryoji Tanabe, "Speeding up local search for the indicator-based subset selection problem by a candidate list strategy", TEVC, 2025.

Local Optima Network (LON)

- ▶ Vertices: local optima; darker means better indicator value
- Edges: connect solutions reachable by two swaps
- The type of an indicator and PF shape influences the LON

Summary

- Landscape analysis of the ISSP
- Main findings
 - Indicator and PF shape affect indicator value distribution
 - Strong correlation between HV-SSP and NR2-SSP
 - ▶ The ϵ -SSP is multimodal and hard-to-solve for LS
 - Algorithms using objective-space distances are promising
- Future work
 - ► Larger-scale landscape analysis: greater point set size
 - Algorithm design informed by landscape properties