Contrasting the Landscapes of Feature Selection under Different Machine Learning Models Arnaud Liefooghe¹, <u>Ryoji Tanabe²</u>, and Sébastien Verel¹ 1: University of the Littoral Opal Coast , 2: Yokohama National University

1. Background

- **Evolutionary wrapper feature selection is a hot topic**
- Inputs: a feature set of size n and an ML model M
- Output: a subset that maximizes the performance of M
- A binary vector $x \in \{0,1\}^n$ represents a feature subset

5. Local Optima Networks

The structure of LONs significantly depends on the combination of ML algorithms and datasets

Feature #3

- **Disadvantage:** Evaluating f(x) is computationally expensive
 - Each f call requires training an ML model
 - The computationally cheap k-nearest neighbors classification (kNN) is used in most previous studies
- 2. Motivation & Contribution

RQ: How does the choice of an ML model influence the search difficulty of feature selection?

- The landscape of feature selection is poorly understood
 - Only two works by Mostert et al. addressed this topic
 - But, both of their analyses focus only on kNN
- Is the choice of an ML model influential?
- No: Everything is fine! All we need is kNN!
- Yes: Existing algorithms may overfit feature selection using kNN. Benchmarking should be revisited
- 3. Experimental setup 6 ML algorithms

All 2^n subsets were enumerated

(C)

LR, letter

- A node represents a local optima
- A node size represents the size of the basin of attraction
- A node color represents the accuracy f(x)
 - A darker color represents a better solution
- An edge width represents the transition probability between two nodes

6. Number of local optima

- kNN and LR tend to produce more local optima
- By contrast, NB often produces the fewest local optima
 - This could explain the lower correlation between NB and ulletother ML models (see $4 \checkmark$)
- 7 problems have only a single local optima (i.e., unimodal)

knn	k-near. neigh. classif.
SVC	Support vector classif.
LR	logistic regression
DT	decision tree
RF	random forests
NB	naive Bayes

- x = (0, ..., 0) is removed
- A 5-fold cross-validation
- 10 runs of DT and RF to minimize the effect of randomness
- Classif. accuracy is used as f(x)
- scikit-learn implementation

14 classification datasets

dataset	class.	data	Feats.	dataset	class.	data	Feats.
diabetes	2	768	8	creditapproval	2	690	15
breast-cancer	2	286	9	Z00	7	101	16
breast-w	2	699	9	vote	2	435	16
page-blocks	5	5473	10	pendigits	10	10992	16
vowel	11	5473	10	letter	26	20000	16
heart-statlog	2	270	13	vehicle	4	846	18
Schizo	2	340	14	lymph	4	148	18

4. Correlation between the relative rankings of all subsets A point represents a specific dataset A boxplot summarizes the distrib. of coefficients

for each pair of ML algorithms

- The two datasets with the largest number of observations produce a small number of local optima, and vice versa
 - Large datasets are seldom used for benchmarking EAs
 - Our findings suggest the importance of considering them

7. Neutrality

The average proportion of equivalent solutions in the neighborhood of each solution

The level of the neutrality is

high for SVC and NB quite low for DT and RF

Small and large corr. are observed in particular datasets

8. Conclusion

Significant differences across ML models were observed

- This highlights the need to explore ML models beyond kNN
- It is better not to use an ML model as a proxy for another We highlight the importance of considering large datasets Results *not* shown in this poster
- Analysis by 1. the fitness distribution, 2. n. of global optimal 3. FDC, 4. ruggedness, and 5. basins of attractions
- Explaining the perf. of SFS and GA by landscape metrics **Future work**
- Using other scores and datasets with a larger n. of features