
Benchmarking the Hooke-Jeeves Method,

MTS-LS1, and BSrr on the Large-scale BBOB

Function Set

The BBOB-2022 workshop at Boston

Ryoji Tanabe

Yokohama National University

Yokohama, Japan



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Separability in black-box numerical optimization

A D-dim. separable function f can be D 1-dim. functions

arg min
x

f(x) = (arg min
x1

f(x1, ..., ), ...,arg min
xD

f(. . . , xD))

� Separable functions are easier to solve than nonseparable ones

� If an optimizer can exploit the separability

� E.g., Coordinate-wise optimizers

IMHO, a separable real-world problem is very rare

� Some decision variables are likely to depend on each other

� The motivation to study optimizers for separable functions is weak

� Just in case , it is better for an algorithm portfolio to contain an

optimizer that can exploit the separability

� An efficient algorithm selection system is available [Tanabe 22] ,

Ryoji Tanabe: Benchmarking Feature-based Algorithm Selection Systems for Black-box Numerical Optimization. IEEE Trans. Evol. Comput.

in press (2022)

2 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Benchmarking three optimizers for separable functions on bbob-largescale

1. The Hooke-Jeeves method (HJ) [Hooke 61]

� One of the most classical black-box optimizers

2. Multiple trajectory search local search 1 (MTS-LS1) [Tseng 08]

� Designed for the CEC LSGO competition 2008

� Some winners of the CEC (LSGO) competitions used MTS-LS1

� Very similar to the Hooke-Jeeves method, but it has been overlooked

3. Brent-STEP in a round-robin manner (BSrr) [Baudis 15]

� State-of-the-art for the five separable bbob functions (f1, . . . , f5)

� BSrr is a member of a portfolio in recent algorithm selection systems

Robert Hooke, T. A. Jeeves: “Direct Search” Solution of Numerical and Statistical Problems. J. ACM 8(2): 212-229 (1961)

Lin-Yu Tseng, Chun Chen: Multiple trajectory search for Large Scale Global Optimization. IEEE Congress on Evolutionary Computation

2008: 3052-3059

Petr Baudis, Petr Pośık: Global Line Search Algorithm Hybridized with Quadratic Interpolation and Its Extension to Separable Functions.

GECCO 2015: 257-264

3 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

The Hooke-Jeeves method: a pattern move (variable-wise operation)

� HJ iteratively improves a search point x ∈ RD by two moves:

1. a pattern move (variable-wise operation)

2. an exploratory move (vector-wise operation)

� In the pattern move, HJ generates a new point xnew by perturbing

only one variable xi ∈ x (from i = 1 to D)

� xnew
i ← xi + σ(x

up
i − x

low
i ) or xnew

i ← xi − σ(x
up
i − x

low
i )

� σ: step-size (the initial σinit
= 0.4)

� xup
i and xlow

i : the upper and lower bounds for the i-th variable

0.3

2.7

1.8

5.3

2.7

1.8

-5.3

2.7

1.8

Add 5 Add -5

First, add a positive 
perturbation to xi

If not improved, add a negative 
perturbation to xi

� When all trials for all variables were unsuccessful, σ ← c × σ
� c: learning rate (typically, c = 0.5?)

4 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

The Hooke-Jeeves method: an exploratory move (vector-wise operation)

� If the pattern move was successful for at least one variable, HJ

performs a bonus operation

� HJ generates a new point xnew by taking the difference from the

previous one xprev to the current one x

� xnew
← x + (x −xprev

)

5 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

The overall procedure of the Hooke-Jeeves method

1 Initialize x, σ ← σinit;

2 while not happy do

3 xprev
← x;

4 /* The pattern move (variable-wise operation) */

5 for i ∈ {1, . . . ,D} do

6 xnew
← x;

7 xnew
i ← xi + σ(x

up
i − x

low
i );

8 if f(xnew
) < f(x) then x← xnew ;

9 else

10 xnew
← x;

11 xnew
i ← xi − σ(x

up
i − x

low
i );

12 if f(xnew
) < f(x) then x← xnew ;

13 /* The exploratory move (vector-wise operation) */

14 if f(x) < f(xprev
) then

15 xnew
← x + (x − xprev

);

16 if f(xnew
) < f(x) then x← xnew ;

17 else σ ← c × σ ;

6 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Two main differences between MTS-LS1 and the Hooke-Jeeves method

1. MTS-LS1 does not adopt the exploratory move (vector-wise operat.)

2. MTS-LS1 reinitializes the step-size σ when σ is too small

7 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

The Hooke-Jeeves method vs. MTS-LS1

The Hooke-Jeeves method
1 Initialize x, σ ← σinit;

2 while not happy do

3 xprev
← x;

4 for i ∈ {1, . . . ,D} do

5 xnew
← x;

6 xnew
i ← xi + σ(xup

i − xlow
i );

7 if f(xnew
) < f(x) then

x← xnew ;

8 else

9 xnew
← x;

10 xnew
i ← xi

11 − σ(xup
i − xlow

i );

12 if f(xnew
) < f(x) then

13 x← xnew

14 if f(x) < f(xprev
) then

15 xnew
← x + (x −xprev

);

16 if f(xnew
) < f(x) then

x← xnew ;

17 else σ ← c × σ ;

MTS-LS1
1 Initialize x, σ ← σinit;

2 while not happy do

3 xprev
← x;

4 for i ∈ {1, . . . ,D} do

5 xnew
← x;

6 xnew
i ← xi − σ(xup

i − xlow
i );

7 if f(xnew
) < f(x) then

x← xnew ;

8 else

9 xnew
← x;

10 xnew
i ← xi

11 +0.5σ (xup
i − xlow

i );

12 if f(xnew
) < f(x) then

13 x← xnew

14 if f(x) = f(xprev
) then

15 σ ← c × σ;

16 if σ(xup
1 − xlow

1 ) < 10−15 then

17 σ ← σinit

8 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

The Brent-STEP method for 1-dimensional optimization

The Brent method (e.g., fminbnd in Matlab)

� It simultaneously performs the bisection and the secant methods

� Pros : It performs very well on unimodal functions

� Cons : It performs poorly on multimodal functions

Select The Easiest Point (STEP) [Langerman 94]

� It sequentially selects an interval with the smallest difficulty

� Pros : It performs well on multimodal functions

� Cons : It generally converges slow

The Brent-STEP method aims to take their pros

� First, it runs the Brent method

� If the search fails (i.e., on multimodal functions), it then runs STEP

Richard Peirce Brent. Algorithms for Minimization without Derivatives. Englewood Cliffs, 1973

Stefan Langerman, Gregory Seront, Hugues Bersini: S.T.E.P.: The Easiest Way to Optimize a Function. International Conference on

Evolutionary Computation 1994: 519-524

9 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

BSrr: An extension of the Brent-STEP method to D-dimensional opt.

� BSrr applies Brent-STEP to each variable in a round-robin manner

� It is competitive with more sophisticated ones [Pośık 15]

1 Initialize x;

2 while not happy do

3 for i ∈ {1, . . . ,D} do
4 xnew ← x;

5 xnew
i ← Apply a single iteration of brent step to xi;

6 if f(xnew) < f(x) then
7 x← xnew;

8 Update internal parameters of D brent step;

Petr Pośık, Petr Baudis: Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous

Functions. GECCO (Companion) 2015: 1151-1158

10 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

The three optimizers are sensitive to the order of variables

Results of MTS-LS1 on Schwefel 1.2

20 40 60 80 100
Dimensions

103

104

105

106

107

108

S
P

1

lexical

random

� f(x) = ∑D
i=1(∑i

j=1 xj)2

� Similar to LeadingOnes,

the first i variables are

dependent

� lexical: x1, x2, x3, x4, ...

� random: x9, x1, x8, x3, ...

� Max. fevals = 105 ×D
� N. runs = 31

� MTS-LS1 perturbs variables in a lexical order (from x1 to xD)

� It can unintentionally exploit the order of variables

� Their operators are not permutation-invariant [Lehre 12]

� This issue can be very very easily addressed

� by randomly shuffling the order of perturbations

Per Kristian Lehre, Carsten Witt: Black-Box Search by Unbiased Variation. Algorithmica 64(4): 623-642 (2012)

11 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Experimental setup

� The 24 bbob-largescale functions [Varelas 20]

� Dimension D ∈ {20,40,80,160,320,640}

� The results of L-BFGS were taken from [Varelas 19] as a base line

� The Hooke-Jeeves method and MTS-LS1

� We implemented them in C (https://github.com/ryojitanabe/largebbob2022)

� The maximum number of function evaluations: 104 ×D

� The initial step size σinit
= 0.4 (is this best for HJ?)

� The learning rate c = 0.5 and 0.9

� “HJ-5” and “MTS-LS1-5” are HJ and MTS-LS1 with c = 0.5

� “HJ-9” and “MTS-LS1-9” are HJ and MTS-LS1 with c = 0.9

� BSrr
� We used the Python implementation of BSrr (https://github.com/pasky/step)

� Default setting

� The maximum number of function evaluations: 103 ×D

Konstantinos Varelas, Ouassim Ait ElHara, Dimo Brockhoff, Nikolaus Hansen, Duc Manh Nguyen, Tea Tušar, Anne Auger: Benchmarking

large-scale continuous optimizers: The bbob-largescale testbed, a COCO software guide and beyond. Appl. Soft Comput. 97: 106737

(2020)

Konstantinos Varelas: Benchmarking large scale variants of CMA-ES and L-BFGS-B on the bbob-largescale testbed. GECCO (Companion)

2019: 1937-1945

12 / 17

https://github.com/ryojitanabe/largebbob2022
https://github.com/pasky/step


Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Aggregated results on the separable function group (f1, . . . , f5) and the

moderate conditioning function group (f6, . . . , f9) for D = 320

BSrr, HJ-9, and MTSLS1-9 outperform L-BFGS on f1, . . . , f5

� BSrr performs the best on f1, . . . , f5 for all D

� HJ-5 and MTSLS1-5 (with the learning rate c = 0.5) do not work

� c = 0.5 is recommended for CEC functions, but unsuitable for BBOB?

� They are outperformed by L-BFGS on f6, . . . , f9

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

HJ-5

MTSLS1-5

HJ-9

MTSLS1-9

BSrrbbob-largescale f1-f5, 320-D
51 targets: 100..1e-08
15 instances

v2.6

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

BSrr

MTSLS1-5

MTSLS1-9

HJ-5

HJ-9

LBFGSbbob-largescale f6-f9, 320-D
51 targets: 100..1e-08
15 instances

v2.6

13 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Performance deterioration of BSrr on f2 and f4 for D ≥ 320

BSrr could not reach x∗ on f2 and f4 for D ≥ 320
� But, BSrr still performs better than the other optimizers

� The small max. fevals (103 ×D) may be the reason

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

HJ-5

MTSLS1-5

HJ-9

MTSLS1-9

BSrrbbob-largescale f4, 160-D
51 targets: 100..1e-08
15 instances

v2.6

4 Skew Rastrigin-Bueche separ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
LBFGS

HJ-5

MTSLS1-5

HJ-9

MTSLS1-9

BSrrbbob-largescale f4, 320-D
51 targets: 100..1e-08
15 instances

v2.6

4 Skew Rastrigin-Bueche separ

14 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Poor performance of MTS-LS1 on f4

MTS-LS1 works well for f3, but does not work for f4

� MTS-LS1 uses (almost) the symmetric operation

� MTS- LS1 can perform poorly on a function with a asymmetric

landscape structure, e.g., f4

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

HJ-5

MTSLS1-5

HJ-9

MTSLS1-9

BSrrbbob-largescale f3, 320-D
51 targets: 100..1e-08
15 instances

v2.6

3 Rastrigin separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

HJ-5

MTSLS1-5

HJ-9

MTSLS1-9

BSrrbbob-largescale f4, 320-D
51 targets: 100..1e-08
15 instances

v2.6

4 Skew Rastrigin-Bueche separ

15 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Comparison of HJ and MTS-LS1 on f2 and f3 for D = 320

HJ can outperform MTS-LS1 on unimodal functions, e.g., f2

� HJ adopts the the exploratory move (vector-wise operat.)

MTS-LS1 can outperform HJ on multimodal functions, e.g., f3

� MTS-LS1 adopts the reinitialization strategy for the step-size σ

� HJ can be improved by a restart strategy or the reinitialization for σ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

BSrr

MTSLS1-9

HJ-9

MTSLS1-5

HJ-5bbob-largescale f2, 320-D
51 targets: 100..1e-08
15 instances

v2.6

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

HJ-5

MTSLS1-5

HJ-9

MTSLS1-9

BSrrbbob-largescale f3, 320-D
51 targets: 100..1e-08
15 instances

v2.6

3 Rastrigin separable

16 / 17



Introduction Hooke-Jeeves MTS-LS1 BSrr Tips Setting Results Conclusion

Conclusion

Benchmarking HJ, MTS-LS1, and BSrr on bbob-largescale

� BSrr generally performs the best on f1, ..., f5

� BSrr can complement L-BFGS and CMA-ES variants ,
� Its performance deterioration was observed on f2 and f4

� MTS-LS1 cannot handle the asymmetricity in f4

� Due to the symmetric operation

� The same is true for HJ

� HJ performs better than MTS-LS1 on unimodal functions

� But, HJ is outperformed by MTS-LS1 on multimodal functions

� A restart strategy or the reinitialization for σ is needed

Future work

� Benchmarking the winners of the CEC LSGO competitions

� E.g., MOS, SHADE-ILS, and CC-RDG3

� Especially, variable-decomposition-based approaches

17 / 17



Computation time of the three optimizers (10−5 seconds)

The C code is much faster than the Python code

Optimizers Languages 20-D 40-D 80-D 160-D 320-D 640-D

HJ C Na 4.2 5.9 11 21 41

MTS-LS1 C 4.1 2.0 5.8 11 21 42

BSrr Python 13 20 33 62 120 270

� CPU time to run the three optimizers on the 24 bbob-largescale

functions for 2D function evaluations

� Computation environment

� Ubuntu 18.04

� Intel(R) 52-Core Xeon Platinum 8270 (26-Core×2) 2.7GHz

� Compile options -O2

� f21 for D = 640 may be particularly time-consuming

� f21: the Gallagher’s Gaussian 101-me Peaks function



Unexpected results on f19 for any D pointed out by a reviewer (Thanks!)

The initialization method significantly influences the results

� The initial point in HJ-5, HJ-9, MTSLS1-5, and MTSLS1-9

� The center of the search space (0, ...,0)

� The initial point in L-BFGS and BSrr

� randomly generated in the search space

� The solution at (0, ...,0) may have a good objective value

� Known issue? (https://github.com/numbbo/coco/issues/1851)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

LBFGS

BSrr

MTSLS1-9

HJ-9

MTSLS1-5

HJ-5bbob-largescale f19, 20-D
51 targets: 100..1e-08
15 instances

v2.6

19 Griewank-Rosenbrock F8F2

https://github.com/numbbo/coco/issues/1851

	Introduction
	
	

	Hooke-Jeeves
	
	
	

	MTS-LS1
	
	

	BSrr
	
	

	Tips
	Setting
	

	Results
	
	
	
	

	Conclusion
	

	Appendix
	
	



