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ABSTRACT

This paper presents an characteristic analysis of multi-funnel
functions for expensive computational budgets. IPOP-CMA-
ES is applied to three multi-funnel functions from the BBOB
benchmarks for two different budget scenarios. The exper-
imental analysis using Fitness Distance Correlation (FDC)
shows that search spaces of IPOP-CMA-ES in multi-funnel
functions significantly differ depending on the maximum num-
ber of fitness evaluations.

Categories and Subject Descriptors

G.1.6 [Mathematics of Computing]: Optimization—Glo-

bal optimization; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Heuristic methods

1. INTRODUCTION
Some real-world applications of Evolutionary Algorithms

(EA) require executing a very expensive simulations (up to
10 minutes/run) in order to evaluate the fitness of a single
individual. Thus, in recent years, there has been much re-
search on such expensive optimization problems, where only
a small computational budget can be used for the search.

The real parameter optimization benchmark problems for
evaluating the search performance of EA for expensive op-
timization problem have recently been proposed. Typical
benchmark suites are the BBOB benchmarks [3] for ex-
pensive scenario1 and the CEC2014 expensive optimization
benchmarks [5]. However, these benchmarks consist of the
widely used functions and maximum number of fitness evalu-
ations (MaxEvals) is merely set to small limited number (e.g.
MaxEvals = 102 × D, where D is the benchmark problem
dimensionality). Thus, an suitability of these benchmarks
might be open to question.

In this paper, we consider muti-funnel functions, which
have a high deceptive structure and are considered as EA-
hard problems, for expensive computational budget scenario.

1http://coco.gforge.inria.fr/doku.php?id=bbob-2013
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The previous work [6] showed that CMA-ES struggle to
search the optimal solution for multi-funnel functions for
cheap scenario where EA can utilize a relatively large com-
putational budget. In contrast, for expensive scenario where
only a small computational budget can be used for the search,
EA might be not able to obtain the local optimal solution
in a suboptimal basin and is not affected multi-funnel struc-
ture. Since the fraction of the search space that an EA can
explore depends on the available computational budget, the
problem characteristics might differ whether a budget sce-
nario is an expensive scenario (e.g. MaxEvals = 102×D) or a
cheap scenario (e.g. MaxEvals = 104 ×D). To clarify above
issues, this paper presents an empirical analysis of multi-
funnel functions for expensive/cheap computational budgets
scenario using Fitness Distance Correlation (FDC) [4].

2. FITNESS DISTANCE CORRELATION
FDC [4] is a landscape analysis method which analyzes

the correlation between f(x), the fitness of a D-dimensional
solution vector x = (x1, ..., xD) and d(x,x∗), the distance
between x and the optimal solution vector x

∗. Euclidean
distance is a general distance metric d(·, ·) for real parameter
optimization problem. The global structure (e.g. single-
funnel or multi-funnel structure) of a given problem can be
understood by analyzing the correlation between f(x) and
d(x,x∗).

While the FDC can be visualized by using a 2-D plot of
f(x) (vertical axis) and d(x,x∗) (horizontal axis), as shown
in Figure 1, following rFDC metric [4] is used for a quantita-
tive analysis: rFDC = cFD

sF sD
, cFD = 1

n

∑n

i=1
(fi − f̄)(di − d̄).

Where n is the number of sampled solution vectors {x1, ...,

xn}, fi and di are the fitness and distance (from x
∗) of the i-

th vector xi (1 ≤ i ≤ n), and f̄ , d̄, sF , sD are the means and
standard deviations of fitness values and distances, respec-
tively. As rFDC approaches 1, the search space has a more
pronounced big valley structure, which is an easy problem
for EA. On the other hand, rFDC closes to 0 indicates that
the global structure is a weak or none, and a negative value
of rFDC indicates a deceptive structure.

3. EXPERIMENT RESULTS
To analyze characteristics of multi-funnel functions, we

apply IPOP-CMA-ES2 [1] to the 10-dimensional f21, f22 and
f24 from the BBOB benchmarks [3] for two different budged

2We conducted the same experiments for DE and PSO, but
the obtained results are very similar to the IPOP-CMA-ES
results shown in Figure 1.
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Figure 1: Figures (a) – (c) show the FDC for the 10-dimensional
f21, f22 and f24 from the BBOB benchmarks respectively. Solu-
tions generated by IPOP-CMA-ES and corresponding error val-
ues in the best run out of 25 runs are plotted. The median
rFDC values are also shown in the figures. The horizontal axis
represents the Euclidean distance between x and the best-so-far
solution x

bsf , and the vertical axis represents the error value
of x (lower is better). Left and right figures show the results
for cheap scenario (MaxEvals= 104 ×D) and expensive scenario
(MaxEvals= 102 ×D) respectively.

scenarios: expensive scenario (MaxEvals = 102 × D) and
cheap scenario (MaxEvals = 104 ×D). f21 and f22 are gen-
erated by using MSG function generator [2] and have 101
and 21 peaks respectively. f24 is designed by using double-
funnel function generator proposed by Lunacek et al [6] and
has two funnels. For IPOP-CMA-ES, we used the control
parameter values that were suggested in [1]. On each prob-
lem, IPOP-CMA-ES is executed 25 times with same function
instance.

Figure 1 shows the FDC scatter plots and the rFDC val-
ues for IPOP-CMA-ES. Note that the best-so-far solution
x

bsf is used for the FDC analysis instead of the optimal
solution x

∗ since our interest is not problem itself such as
traditional landscape analysis studies, but search spaces of
EA. The shapes of their FDC scatter plots are significantly
different depending on budget scenario. For cheap scenario,
IPOP-CMA-ES can clearly find out the global structure. For
instance, three funnels can be seen on the result of f21 for
cheap scenario (Figure 1(a) left). In contrast, due to a small

computational budget, IPOP-CMA-ES can only find a fun-
nel on the result of f21 for expensive scenario. This result is
also shown in f24 having the double-funnel landscape. While
we can see clear two valleys of f24 for cheap scenario (Figure
1(c) left), only a valley can be seen for expensive scenario
(Figure 1(c) right).

The rFDC values for expensive scenario tend to be higher
than those for cheap scenario. Especially, the rFDC values
in f21, f22 for expensive scenario are 0.94 and 0.96 respec-
tively. This means that f21 and f22 are almost the same as
single funnel function having high fitness-distance correla-
tion. This observation is significantly incompatible with the
original function properties of f21 and f22.

4. DISCUSSION AND CONCLUSION
In Section 3, we confirmed that the search spaces of IPOP-

CMA-ES in multi-funnel functions significantly differ de-
pending on the available computational budgets. This re-
sults demonstrate that the current BBOB benchmarks might
be inappropriate for evaluating the performance of EA for
solving expensive optimization problem. The search per-
formance of IPOP-CMA-ES might be invariant whether a
given function has the single-funnel/multi-funnel structure
for expensive scenario. This misleads the compared results
among the different algorithms. Let us consider evaluat-
ing method A and method B for a single-funnel function
(e.g. Rastrigin function) and a multi-funnel function (e.g.
Double-Rastrigin function) for expensive scenario. Due to
above reason, he/she might incorrectly conclude as: “For
expensive scenario, the method A perform better than the
method B independent from the global structure”.

To avoid this incorrect conclusion, following two direc-
tions can be considered as our future works: (1) eliminat-
ing benchmark functions having unexpected rFDC values or
shapes such as f21, f22 and f24 from a benchmark set, (2)
designing new benchmark functions for expensive scenario.
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