On the Unbounded External Archive and Population Size in

Preference-based EMO Using a Reference Point

GECCO 2023 at Lisbon

Ryoji Tanabe

Yokohama National University Yokohama city, Japan

- The DM does not want to examine so many solutions
- A postprocessing method is available to select only \boldsymbol{k} solutions

I have no preference a priori. I want an approximation of the PF. Then, I will examine it.

PBEMO (e.g., R-NSGA-II) approximates a region of interest (ROI)

- Approximating the ROI can be easier than approximating the PF
- Showing only preferred solutions can reduce the DM's cognitive load

Kalyanmoy Deb, J. Sundar, Udaya Bhaskara, and Shamik Chaudhuri: Reference Point Based Multi-Objective Optimization Using Evolutionary Algorithms. Int. J. Comput. Intell. 2, 3 (2006), 273–286.

Introduction	ROI	Proposed postprocessing method	Setup	Results (unb. archive)	Results (pop size)	Conclusion
○○●	O	0000	O	00	O	O
Three m	ain co	ntributions of this w	vork			

Long-term goal: Establishing a benchmarking methodology for PBEMO

- 1. It proposes a preference-based postprocessing method
 - Existing pp methods cannot handle the DM's preference information
- 2. It investigates effects of the unbounded archive in PBEMO
 - Except for [Fonseca 93], no previous study used the archive
- 3. It investigates the best population size for PBEMO
 - Intuitively, PBEMO requires only a small population size
 - But, most previous studies used a large population size

Ref.	Population size
NSGA-II	100
R-NSGA-II PBEA R-MEAD2	100 - 500 20 - 200 200 - 350

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. ICGA 1993: 416-423

Just as there is no standard GA, there is no standard ROI [Tanabe 23]

- If there are 100 researchers, there are 100 different GAs and ROIs
- ROI based on the Pareto opt. point
 closest to the ref. point
 - A set of all Pareto opt. points in a sphere of radius r centered at \blacksquare

Ryoji Tanabe, Ke Li: Quality Indicators for Preference-based Evolutionary Multi-objective Optimization Using a Reference Point: A Review and Analysis. CoRR abs/2301.12148 (2023)

Difficulty: A set of k points should approximates the ROI

1. Find the closest point **•** to the ref. point **•** from the archive

2. Select points in the region of a sphere of radius r centered at

 $\mathcal{X} = \left\{ \bullet \in \text{archive} | \text{distance}(\bullet, \bullet) < r \right\}$ There are three cases 3.1 $|\mathcal{X}| = k$ 3.2 $|\mathcal{X}| < k$ 3.3 $|\mathcal{X}| > k$

The proposed method selects unselected points closest to

- The DM is interested in closer points to the center point
- even though they are out of the approximated ROI

Example: k = 3, $|\mathcal{X}| = 2$, and |archive| = 7

$$\begin{aligned} \mathcal{X} &= \{\blacksquare^5, \bullet^6\}, \ |\mathcal{X}| < 3 \\ \bullet^4 \text{ is closest to } \blacksquare^5 \\ \bullet^4 \text{ is added to } \mathcal{X} \\ \mathcal{X} &= \{\bullet^4, \blacksquare^5, \bullet^6\}, \ |\mathcal{X}| = 3 \end{aligned}$$

A conventional postprocessing method can be used

- It selects k representative points from $\ensuremath{\mathcal{X}}$
- Iterative distance-based subset selection (IDSS) [Shang 21]

Example: k = 3, $|\mathcal{X}| = 4$, and |archive| = 7

$$\mathcal{X} = \{\bullet^3, \bullet^4, \bullet^5, \bullet^6\}, |\mathcal{X}| > 3$$

•⁴ is the most crowded
•⁴ is removed from \mathcal{X}
 $\mathcal{X} = \{\bullet^3, \bullet^5, \bullet^6\}, |\mathcal{X}| = 3$

Ke Shang, Hisao Ishibuchi, Yang Nan: Distance-based subset selection revisited. GECCO 2021: 439-447

Introduction	ROI	Proposed postprocessing method	Setup	Results (unb. archive)	Results (pop size)	Conclusion
000	O	0000	•	00	O	O
Experim	ental s	setup: We used				

- The ND-Tree-based method for nondom. sorting [Jaszkiewicz 18]
- Six representative PBEMO algorithms
 - R-NSGA-II, r-NSGA-II, g-NSGA-II, PBEA, R-MEAD2, MOEA/D-NUMS
- The maximum number of function evaluations = 50,000
- DTLZ1-4 with 2-6 objectives O, the radius of the ROI r = 0.1
- k = 100, a single reference point near the center of the PF
- An IGD⁺ version of IGD-C [Mohammadi 14] as a quality indicator

Andrzej Jaszkiewicz, Thibaut Lust: ND-Tree-Based Update: A Fast Algorithm for the Dynamic Nondominance Problem. IEEE Trans. Evol. Comput. 22(5): 778-791 (2018)

Asad Mohammadi, Mohammad Nabi Omidvar, Xiaodong Li, Kalyanmoy Deb: Integrating user preferences and decomposition methods for many-objective optimization. IEEE Congress on Evolutionary Computation 2014: 421-428

The unb. archive pp by the proposed method performs the best

Interesting findings

- A PBEMO algorithm generates diverse solutions outside the ROI
- Many irrelevant solutions are included in the unbounded archive
- An existing method (IDSS) cannot remove the irrelevant solutions
- It is important for pp methods to consider the DM's pref. info.

Introduction	ROI	Proposed postprocessing method	Setup	Results (unb. archive)	Results (pop size)	Conclusion
000	O	0000	O	○●	O	O

Average IGD⁺-C values of the three solution subsets found by R-NSGA-II

The unb. archive pp by the proposed method performs the best

for DTLZ1–4 with $m \in \{2,3,4,5,6\}$ in most cases

Problem	m	Population	Arch./IDSS	Arch./Proposed
DTLZ1	2 3 4 5 6	0.0236 0.0334 0.0562 0.0933 0.1131	0.0018 (+) 0.0211 (+) 0.0743 (-) 0.0782 (+) 0.0779 (+)	$\begin{array}{c} 0.0012 (+, +) \\ 0.0220 (+, \approx) \\ 0.0442 (+, +) \\ 0.0558 (+, +) \\ 0.0695 (+, +) \end{array}$
DTLZ2	2 3 4 5 6	0.0411 0.1247 0.1986 0.2729 0.2840	0.0016 (+) 0.0276 (+) 0.0720 (+) 0.1162 (+) 0.1540 (+)	$\begin{array}{c} 0.0004 \ (+, \ +) \\ 0.0114 \ (+, \ +) \\ 0.0339 \ (+, \ +) \\ 0.0600 \ (+, \ +) \\ 0.0853 \ (+, \ +) \end{array}$
DTLZ3	2 3 4 5 6	0.0345 0.1083 0.1988 0.2370 0.8749	0.0083 (+) 0.0460 (+) 0.1736 (≈) 0.2169 (≈) 0.8287 (+)	$\begin{array}{c} 0.0078 \ (+, \ \approx) \\ 0.0309 \ (+, \ +) \\ 0.0636 \ (+, \ +) \\ 0.1024 \ (+, \ +) \\ 0.7224 \ (+, \ +) \end{array}$
DTLZ4	2 3 4 5 6	0.1014 0.0838 0.1030 0.3757 0.3214	0.0829 (≈) 0.0528 (+) 0.0741 (+) 0.1206 (+) 0.1144 (+)	$\begin{array}{c} 0.0818 \ (\approx, \ \approx) \\ 0.0375 \ (+, \ +) \\ 0.0465 \ (+, \ +) \\ 0.0759 \ (+, \ +) \\ 0.0655 \ (+, \ +) \end{array}$

Introducti 000	on I	ROI F	roposed postpr	rocessing method	Setup O	Results (un 00	b. archive)	Results (pop size) ●	Conclusion O
The	best p	popula	tion siz	e in R-NSG	A-II on	all D	rlz1-d1	rlz4	
	• T	he pop	. size ∈	{ 8, 20, 4	40 , <mark>100</mark>), 200	, 300,	400 , 500 }	
	• T	he unb	ounded	archive pp b	y the pr	oposed	method i	s used	
	A si	mall po	p. size i	s effective ev	ven for i	many o	bj. and a	large budget	
-	Obj.	100	0 FEs	5000 FEs	10000	FEs	30 000 FE	s 50000 FE	s

Most previous studies may have used a too large population size

2-obj

4-obj

6-obj

PBEMO	Population size	Obj.	Budget of FEs
R-NSGA-II	100 - 500	2 - 10	$5 \times 10^4 - 2.5 \times 10^5$
PBEA	20, 200	2,5	2×10^3 , 2×10^4
R-MEAD2	200 - 350	4 - 10	$6 \times 10^4, 9 \times 10^4, 1.05 \times 10^5$
NUMS	100 - 660	2 - 10	$4 \times 10^4 - 1.188 \times 10^6$

Introduction	ROI	Proposed postprocessing method	Setup	Results (unb. archive)	Results (pop size)	Conclusion
000	O	0000	O	00	O	•
Conclusio	on					

- 1. This work proposed a preference-based postprocessing method
 - The method can handle the DM's preference information
- 2. It investigated effects of the unbounded archive in PBEMO
 - The arch. and the proposed pp method can improve PBEMO algs
- 3. It investigated the best population size for PBEMO
 - A smaller population size than commonly used is effective even for
 - a large budget of function evaluations (in some cases)
 - many objectives (in some cases)

Future work

- analyzes PBEMO algorithms using other pref. elicitation methods
- extends the proposed pp method for interactive PBEMO

Why is a small population size is effective for PBEMO in this work?

- 1. This work used the unb. archive and the preference-based postprocessing method
 - A small-size population cannot maintain many solutions
 - This issue can be addressed by using the unb. archive and the ppp method
- 2. This work used a single reference point
 - When using multiple reference points, the best pop. size may be large
 - But, I believe that the number of reference points is not problematic
 - Suppose that two reference points are used
 - I expect that the best pop. size for two reference points is just two times larger than the best pop. size for a single reference point

The best pop. size for two reference points may be just two times larger than the best pop. size for a single reference point

	The be	est pop. size	for a single re	ference point	
Obj.	$1000\mathrm{FEs}$	$5000\mathrm{FEs}$	$10000 \mathrm{FEs}$	$30000\mathrm{FEs}$	$50000~\mathrm{FEs}$
2-obj	8	20	8	8	200
4-obj	8	40	20	20	20
6-obj	20	40	100	40	100

The **EXPECTED** best pop. size for two reference points

Obj.	1000 FE	s 5000 FEs	10000 FEs	30000 FEs	50000 FEs
2-obj	16	40	16	16	400
4-obj	16	80	40	40	40
6-obj	40	80	200	80	200