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An unbounded archive maintains all non-dominated solutions found so far

The archive can be incorporated into any EMO algorithm

Unb. archiveNSGA-II Unb. archiveMOEA/D

It can maintain all solutions potentially preferred by the DM

Final pop. of size 8
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• The DM does not want to examine so many solutions

• A postprocessing method is available to select only k solutions
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Preference-based EMO using a reference point (PBEMO) [Deb 06]

EMO (e.g., NSGA-II) approximates the whole Pareto front

DM I have no preference a priori.
I want an approximation of the PF.
Then, I will examine it.

PBEMO (e.g., R-NSGA-II) approximates a region of interest (ROI)

DM I have a preference a priori.
I want solutions near the ref. point ▲.

• Approximating the ROI can be easier than approximating the PF

• Showing only preferred solutions can reduce the DM’s cognitive load

Kalyanmoy Deb, J. Sundar, Udaya Bhaskara, and Shamik Chaudhuri: Reference Point Based Multi-Objective Optimization Using Evolu-

tionary Algorithms. Int. J. Comput. Intell. 2, 3 (2006), 273–286.
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Three main contributions of this work

Long-term goal: Establishing a benchmarking methodology for PBEMO

1. It proposes a preference-based postprocessing method

• Existing pp methods cannot handle the DM’s preference information

2. It investigates effects of the unbounded archive in PBEMO

• Except for [Fonseca 93], no previous study used the archive

3. It investigates the best population size for PBEMO

• Intuitively, PBEMO requires only a small population size

• But, most previous studies used a large population size

Ref. Population size

NSGA-II 100

R-NSGA-II 100 – 500
PBEA 20 – 200
R-MEAD2 200 – 350

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization.

ICGA 1993: 416-423
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Preliminary: The region of interest (ROI) considered in this work

Just as there is no standard GA, there is no standard ROI [Tanabe 23]

• If there are 100 researchers, there are 100 different GAs and ROIs

ROI based on the Pareto opt. point ∎ closest to the ref. point ▲

• A set of all Pareto opt. points in a sphere of radius r centered at ∎
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∎ = arg min
●∈PF

{distance (●,▲)} ,

ROI = {● ∈ PF ∣distance(●,∎) < r} .

r is supplied by the DM or analyst

Ryoji Tanabe, Ke Li: Quality Indicators for Preference-based Evolutionary Multi-objective Optimization Using a Reference Point: A Review

and Analysis. CoRR abs/2301.12148 (2023)
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Proposed preference-based postprocessing method

Input

Unbounded archive
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Difficulty: A set of k points should approximates the ROI
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Proposed preference-based postprocessing method

1. Find the closest point ∎ to the ref. point ▲ from the archive
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∎ = arg min
●∈archive

{distance (●,▲)}

2. Select points in the region of a sphere of radius r centered at ∎
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X = {● ∈ archive ∣distance(●,∎) < r}
There are three cases

3.1 ∣X ∣ = k

3.2 ∣X ∣ < k

3.3 ∣X ∣ > k
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3.2 The size of the subset X is less than k

The proposed method selects unselected points closest to ∎

• The DM is interested in closer points to the center point ∎

• even though they are out of the approximated ROI

Example: k = 3, ∣X ∣ = 2, and ∣archive∣ = 7
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X = {∎5, ●6}, ∣X ∣ < 3
●4 is closest to ∎5
●4 is added to X
X = {●4,∎5, ●6}, ∣X ∣ = 3
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3.3 The size of the subset X is greater than k

A conventional postprocessing method can be used

• It selects k representative points from X

• Iterative distance-based subset selection (IDSS) [Shang 21]

Example: k = 3, ∣X ∣ = 4, and ∣archive∣ = 7
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X = {●
3, ●4,∎5, ●6}, ∣X ∣ > 3

●
4 is the most crowded

●
4 is removed from X

X = {●3,∎5, ●6}, ∣X ∣ = 3

Ke Shang, Hisao Ishibuchi, Yang Nan: Distance-based subset selection revisited. GECCO 2021: 439-447
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Experimental setup: We used...

• The ND-Tree-based method for nondom. sorting [Jaszkiewicz 18]

• Six representative PBEMO algorithms
• R-NSGA-II , r-NSGA-II, g-NSGA-II, PBEA, R-MEAD2, MOEA/D-NUMS

• The maximum number of function evaluations = 50,000

• DTLZ1–4 with 2–6 objectives / , the radius of the ROI r = 0.1

• k = 100 , a single reference point near the center of the PF

• An IGD+ version of IGD-C [Mohammadi 14] as a quality indicator

Ref. set of IGD
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Andrzej Jaszkiewicz, Thibaut Lust: ND-Tree-Based Update: A Fast Algorithm for the Dynamic Nondominance Problem. IEEE Trans. Evol.

Comput. 22(5): 778-791 (2018)

Asad Mohammadi, Mohammad Nabi Omidvar, Xiaodong Li, Kalyanmoy Deb: Integrating user preferences and decomposition methods for

many-objective optimization. IEEE Congress on Evolutionary Computation 2014: 421-428
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Distributions of points found by R-NSGA-II with µ = 100 (bi-obj. DTLZ2)

The unb. archive pp by the proposed method performs the best

Final population
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Interesting findings

• A PBEMO algorithm generates diverse solutions outside the ROI

• Many irrelevant solutions are included in the unbounded archive

• An existing method (IDSS) cannot remove the irrelevant solutions

• It is important for pp methods to consider the DM’s pref. info.
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Average IGD+-C values of the three solution subsets found by R-NSGA-II

The unb. archive pp by the proposed method performs the best

for DTLZ1–4 with m ∈ {2,3,4,5,6} in most cases

Problem m Population Arch./IDSS Arch./Proposed

2 0.0236 0.0018 (+) 0.0012 (+, +)
3 0.0334 0.0211 (+) 0.0220 (+, ≈)

DTLZ1 4 0.0562 0.0743 (−) 0.0442 (+, +)
5 0.0933 0.0782 (+) 0.0558 (+, +)
6 0.1131 0.0779 (+) 0.0695 (+, +)

2 0.0411 0.0016 (+) 0.0004 (+, +)
3 0.1247 0.0276 (+) 0.0114 (+, +)

DTLZ2 4 0.1986 0.0720 (+) 0.0339 (+, +)
5 0.2729 0.1162 (+) 0.0600 (+, +)
6 0.2840 0.1540 (+) 0.0853 (+, +)

2 0.0345 0.0083 (+) 0.0078 (+, ≈)
3 0.1083 0.0460 (+) 0.0309 (+, +)

DTLZ3 4 0.1988 0.1736 (≈) 0.0636 (+, +)
5 0.2370 0.2169 (≈) 0.1024 (+, +)
6 0.8749 0.8287 (+) 0.7224 (+, +)

2 0.1014 0.0829 (≈) 0.0818 (≈, ≈)
3 0.0838 0.0528 (+) 0.0375 (+, +)

DTLZ4 4 0.1030 0.0741 (+) 0.0465 (+, +)
5 0.3757 0.1206 (+) 0.0759 (+, +)
6 0.3214 0.1144 (+) 0.0655 (+, +)
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The best population size in R-NSGA-II on all DTLZ1–DTLZ4

• The pop. size ∈ { 8 , 20 , 40 , 100 , 200 , 300 , 400 , 500 }

• The unbounded archive pp by the proposed method is used

A small pop. size is effective even for many obj. and a large budget

Obj. 1000 FEs 5000 FEs 10000 FEs 30000 FEs 50000 FEs

2-obj 8 20 8 8 200

4-obj 8 40 20 20 20

6-obj 20 40 100 40 100

Most previous studies may have used a too large population size

PBEMO Population size Obj. Budget of FEs

R-NSGA-II 100 – 500 2 – 10 5 × 104 – 2.5 × 105

PBEA 20 , 200 2, 5 2 × 103, 2 × 104

R-MEAD2 200 – 350 4 – 10 6 × 104,9 × 104,1.05 × 105

NUMS 100 – 660 2 – 10 4 × 104 – 1.188 × 106
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Conclusion

1. This work proposed a preference-based postprocessing method

• The method can handle the DM’s preference information

2. It investigated effects of the unbounded archive in PBEMO

• The arch. and the proposed pp method can improve PBEMO algs

3. It investigated the best population size for PBEMO

• A smaller population size than commonly used is effective even for

• a large budget of function evaluations (in some cases)

• many objectives (in some cases)

Future work

• analyzes PBEMO algorithms using other pref. elicitation methods

• extends the proposed pp method for interactive PBEMO
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Why is a small population size is effective for PBEMO in this work?

1. This work used the unb. archive and the preference-based

postprocessing method

• A small-size population cannot maintain many solutions

• This issue can be addressed by using the unb. archive and the ppp

method

2. This work used a single reference point

• When using multiple reference points, the best pop. size may be

large

• But, I believe that the number of reference points is not problematic

• Suppose that two reference points are used

• I expect that the best pop. size for two reference points is just two

times larger than the best pop. size for a single reference point



The best pop. size for two reference points may be just two times larger

than the best pop. size for a single reference point

The best pop. size for a single reference point

Obj. 1000 FEs 5000 FEs 10000 FEs 30000 FEs 50000 FEs

2-obj 8 20 8 8 200

4-obj 8 40 20 20 20

6-obj 20 40 100 40 100

The EXPECTED best pop. size for two reference points

Obj. 1000 FEs 5000 FEs 10000 FEs 30000 FEs 50000 FEs

2-obj 16 40 16 16 400

4-obj 16 80 40 40 40

6-obj 40 80 200 80 200


	Introduction
	
	
	

	ROI
	

	Proposed postprocessing method
	
	
	
	

	Setup
	

	Results (unb. archive)
	
	

	Results (pop size)
	

	Conclusion
	

	Appendix
	Appendix
	
	



