Revisiting Population Models in Differential Evolution on a Limited Budget of Evaluations

Ryoji Tanabe

Yokohama National University, Yokohama, Japan

Introduction

- ► DE has never shown state-of-the-art performance for expensive optimization
 - Even a surrogate-assisted DE has never outperformed a non-surrogate-assisted ES
- ► This work revisits population models in DE for expensive optimization
 - A population model determines how to update the population for each iteration
 - ► DE uses the synchronous model, which was designed for *inexpensive* optimization
 - Q. Can the performance of DE be improved by using a suitable population model?

2.1. Synchronous model (Syn) [Storn 97]

7. Summary

A. Yes, the performance of DE can be improved by using a suitable population model

- The $(\mu + \lambda)$ and worst improvement models are suitable for expensive optimization
- ► DE with the two models perform better than or similar to CMA-ES depending on FEs and dim n, especially for small FEs (e.g., $10 \times n$) and/or low n (e.g., $n \leq 10$)
- \blacktriangleright CMA-ES with the auto-tuned parameters significantly outperforms DE for $n \ge 20$
- ► Future work
 - \blacktriangleright incorporate a parameter adaptation method for F and C into DE
 - design a surrogate-assisted DE with the $(\mu + \lambda)$ and worst improvement models

1 Initialize $\boldsymbol{P} = \{\boldsymbol{x}_1, ..., \boldsymbol{x}_{\mu}\}$ randomly; 2 while not happy do 3 for $i \in \{1, ..., \mu\}$ do 4 | $\boldsymbol{u}_i \leftarrow$ Generate a child;

- 5 for $i \in \{1, ..., \mu\}$ do
- 6 | if $f(\boldsymbol{u}_i) \leq f(\boldsymbol{x}_i)$ then $\boldsymbol{x}_i \leftarrow \boldsymbol{u}_i$;
- ▶ Population size μ , population P, parent individual x, child u
- ► Syn updates all individuals in **P** simultaneously
- ► The index-based niching mechanism in Syn promotes diversity

2.2. Asynchronous model (Asy) [Wormington 99]

1 Initialize $oldsymbol{P} = \{oldsymbol{x}_1, ..., oldsymbol{x}_\mu\}$ randomly; 2 while not happy do

- 3 for $i \in \{1, ..., \mu\}$ do
- 4 $u \leftarrow$ Generate a child;
- 5 | if $f(\boldsymbol{u}) \leq f(\boldsymbol{x}_i)$ then $\boldsymbol{x}_i \leftarrow \boldsymbol{u}$;

\blacktriangleright Immediately after generating u, the parent \boldsymbol{x}_i is compared to \boldsymbol{u}

- ► Asy is generally faster than Syn
- ► Asy can exploit a new superior individual for the search immediately

4. Results of DE with the hand-tuned parameters

- ► The worst improvement and $(\mu + \lambda)$ models show the best performance
- The $(\mu + \lambda)$ performs better than the worst improvement model at the early stage
- ► The traditional synchronous model performs the worst among the 5 models

1 Initialize $\boldsymbol{P} = \{\boldsymbol{x}_1, ..., \boldsymbol{x}_{\mu}\}$ randomly; 2 while not happy do

2.3. $(\mu + \lambda)$ model (Plus)

- 3 $\boldsymbol{Q} \leftarrow \emptyset;$
- 4 for $i \in \{1, ..., \lambda\}$ do $u \leftarrow \mathsf{Generate} \ \mathsf{a} \ \mathsf{child};$ $ig| oldsymbol{Q} \leftarrow oldsymbol{Q} \cup \{oldsymbol{u}\};$ 6 7 $\boldsymbol{P} \leftarrow \mu$ best individuals in $\boldsymbol{P} \cup \boldsymbol{Q}$;
- Only a few DEs use Plus
- ► The so-called target vector is randomly selected from the population P
- Syn may discard a child that is worse

5. Results of DE with the auto-tuned parameters

- ► "T-" means that the corresponding optimizer uses the auto-tuned parameters
- For $n \in \{20, 40\}$, the auto-tuned parameters are more suitable in most cases

than its parent but better than others

- ► In contrast, Plus does not do that
- ► The results here are almost consistent with the results with the hand-tuned param.

best 2009

≺T-Plus

T-STS

Plus

YT-WI

Asy

T-Asy

DSTS

OSyn

20 dim.

2.4. Worst improvement model (WI) [Ali 11]

- 1 Initialize $\boldsymbol{P} = \{\boldsymbol{x}_1, ..., \boldsymbol{x}_{\mu}\}$ randomly; 2 while not happy do
- 3 $K \leftarrow \mathsf{IDs}$ of λ worst individuals in P;
- 4 for $i \in K$ do
- 5 $| u_i \leftarrow$ Generate a child;
- 6 for $i \in K$ do
- 7 | if $f(\boldsymbol{u}_i) \leq f(\boldsymbol{x}_i)$ then $\boldsymbol{x}_i \leftarrow \boldsymbol{u}_i$;
- ► WI is similar to Syn
- \blacktriangleright Only λ worst parents generate children
- \blacktriangleright A better x is rarely replaced with its u
 - Generating u is wasteful
- FEs can be reduced by allowing only λ
 - worst parents to generate their children

2.5. Subset-to-subset model (STS) [Guo 19]

- Individuals in $P \cup Q$ are divided into s groups based on the index-based ring topo.
- Individuals in each group is compared with each other

3. Experimental setup

Setting for test functions

► BBOB noiseless function set [Hansen 09] in COCO [Hansen 16] ► All ECDF figures were generated by COCO with the option --expensive • Dimensionality $n \in \{2, 3, 5, 10, 20, 40\}$ • Maximum number of evaluations $= 100 \times n$, number of runs = 15

6. Comparison to state-of-the-art optimizers

- ► Two surrogate model-based optimizers (SMAC-BBOB and lmm-CMA) perform the best
- For any n, WI and $(\mu + \lambda)$ perform better than a SOTA DE (R-SHADE-10e2)
- For $n \leq 10$, WI and $(\mu + \lambda)$ perform better than or similar to CMAES_Hutter
- For $n \ge 20$, WI and $(\mu + \lambda)$ perform better than CMAES_Hutter at the early stage
- For $n \ge 20$, WI and $(\mu + \lambda)$ perform significantly worse than texp_liao at anytime

- ► Two parameter settings for DE
 - 1. Hand-tuned parameters
 - ► Configurator: Ryoji Tanabe. Training problem set: the Sphere function
 - 2. Automatically-tuned parameters
 - ► Configurator: SMAC [Hutter 11]. Training problem set: CEC2013 [Liang 13]
- Source code and performance data are available:
 - https://github.com/ryojitanabe/de_expensiveopt

- **SMAC-BBOB** [Hutter 13] is a Bayesian optimizer (almost EGO). 1mm-CMA [Auger 13] is a surrogate-assisted CMA-ES
- ► CMAES_Hutter [Hutter 13] is a CMA-ES with the default parameters
- ▶ texp_liao [Liao 13] is a CMA-ES with auto-tuned parameters for expensive optimization
- ▶ R-SHADE-10e2 [Tanabe 15] is a SHADE with auto-tuned parameters for expensive optimization
- ► DE-scipy [Varelas 19] is DE from the Python SciPy library

5 dim.