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Four-phased HMO-CMA-ES [Loshchilov 16] performs well for expensive opt.

1st phase runs BOBYQA on K scalar optimization problems

• BOBYQA [Powell 09]: SOTA mathematical derivative-free optimizer

• It iteratively solves a trust region sub-problem using quadratic models

BOBYQA BOBYQA

BOBYQA

BOBYQA

BOBYQA

• 1st phase uses only the 10 ×N fevals in total (N = Num. variables)

• 2nd: SS-MO-CMA-ES → 3rd: MO-CMA-ES → 4th: CMA-ES

• HMO-CMA-ES shows an excellent anytime performance ,
Ilya Loshchilov, Tobias Glasmachers: Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES). GECCO

(Companion) 2016: 1169-1176

M. J. D. Powell. 2009. The BOBYQA algorithm for bound constrained optimization without derivatives. Technical Report DAMTP

2009/NA06. University of Cambridge
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One drawback of the 1st phase in HMO-CMA-ES

It can achieve only K sparsely distributed solutions

• Only a limited number of fevals are available

• K needs to be as small as possible (K = 5 in ↙)

Motivation

• Can this issue be addressed by a solution interpolation approach?
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Proposed: A Two-Phase framework with a Bézier simplex-based

interpolation method (TPB)

1st phase is similar to that in HMO-CMA-ES

• It runs BOBYQA on K scalar problems, but its details are different

• K = Num. objectives +1 (= 2 + 1 = 3 in this study)

• The normalization procedure, a budget allocation strategy, the order

of scalar optimization, control parameters of BOBYQA, etc.

2nd phase interpolates the K(= 3) solutions by the Bézier simplex

• It is theoretically well-founded and can fit the K solutions

1st 2nd 1st 2nd

buget1 buget2
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Bézier simplex: A generalized version of the Bézier curve to higher dims

The Bézier curve

(M = 2, N = 2, D = 3)

0 0.5 1
x1

0

0.5

1
x

2

p(3,0)

p(2,1)

p(1,2)

p(0,3)

The Bézier simplex

(M = 3, N = 3, D = 3)

From [Kobayashi 19]

• M : Num. objectives, N : Num. variables, D: Degree of a model

• D determines the number of control points pd1
, ... ∈ RN

• Control points define a Bézier simplex model

• It can describe the Pareto optimal solution set X⋆
[Kobayashi 19]

• When X⋆ is homeomorphic to an (M − 1)-dim. simplex [Hamada 20]

• The theoretically well-founded nice property for the interpolation ,
Ken Kobayashi, Naoki Hamada, Akiyoshi Sannai, Akinori Tanaka, Kenichi Bannai, Masashi Sugiyama: Bézier Simplex Fitting: Describing

Pareto Fronts of Simplicial Problems with Small Samples in Multi-Objective Optimization. AAAI 2019: 2304-2313

Naoki Hamada, Kenta Hayano, Shunsuke Ichiki, Yutaro Kabata, Hiroshi Teramoto: Topology of Pareto Sets of Strongly Convex Problems.

SIAM J. Optim. 30(3): 2659-2686 (2020)
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Example: Bézier simplex with M = 2 (N. obj), N = 2 (N. var), and D = 2

A Bézier simplex model b ∶ t↦ b(t)
b(t) = t21p(2,0) + 2t1t2p(1,1) + t22p(0,2)

• Input t ∈ RM : a parameter vector, and ∑M
m=1 tm = 1, tm ≥ 0

• Output b(t) ∈ RN : a mapping of t. It can be a solution x ∈ RN

• Model parameters pd1
, ... ∈ RN : Control points
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x1

0

0.5

1

x
2

b(t1) b(t2)
b(t3)

b(t4)

b(t5)

p(2,0)

p(1,1)

p(0,2)

• p(2,0) = (0.1,0.7)
• p(1,1) = (0.8,0.8)
• p(0,2) = (0.9,0.2)
• t1 = (1,0) ↦ b(t1) = (0.1,0.7)
• t2 = (0.75,0.25) ↦ b(t2) ≈ (0.41,0.71)
• t3 = (0.5,0.5) ↦ b(t3) ≈ (0.65,0.63)
• t4 = (0.25,0.75) ↦ b(t4) ≈ (0.81,0.46)
• t5 = (0,1) ↦ b(t5) = (0.9,0.2)
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Bézier simplex fitting to approximate a solution set X [Kobayashi 19]

• Let X = {xk ∈ RN}Kk=1 be a solution set of size K

• Let T = {tk ∈∆M−1 ⊆ RM}Kk=1 be a parameter vec. set of size K

• tk corresponds to xk

• We want a Bézier simplex model b that approximates X

• How do we set control points, e.g., p
(2,0), p(1,1), and p

(0,2)?

• The Bézier simplex fitting method adjusts the control points (pd)

by minimizing the ordinary least squares loss function:

minimize
K

∑
k=1
∥xk − b(tk)∥2

• The loss function is a convex quadratic function with respect to pd

• Its minimizer can be found by solving a normal equation

The PyTorch implementation is available at

https://github.com/rafcc/pytorch-bsf

Ken Kobayashi, Naoki Hamada, Akiyoshi Sannai, Akinori Tanaka, Kenichi Bannai, Masashi Sugiyama: Bézier Simplex Fitting: Describing

Pareto Fronts of Simplicial Problems with Small Samples in Multi-Objective Optimization. AAAI 2019: 2304-2313
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1st phase applies BOBYQA to K scalar optimization problems {gwk
}Kk=1

• We set K = 2 + 1 = 3, w1 = (0,1), w2 = (0.5,0.5), w1 = (1,0)
• K should be K ≥M + 1 to handle the nonlinear PS set

• We use the weighted sum function as in HMO-CMA-ES

• TPB can use any g, e.g., the weighted Tchebycheff function

• We set a budget ratio r1st = 0.9
• e.g., budget1st = 0.9 × 40 = 36 fevals when budget= 40 fevals

• Each run of BOBYQA can use budget1st/K = 36/3 = 12 fevals

Results on f1 (Sphere/Sphere) with N = 2 in bbob-biobj
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2nd phase interpolates the K sol. by a Bézier simplex model-based method

2.1 The fitting phase

• The 1st phase obtained X = {x1,x2,x3} using W = {w1,w2,w3}
• TPB treats wk as tfitk , and T fit = {t1, t2, t3}
• TPB fits a Bézier simplex model b to X with T fit =W

2.2 The solution generation phase

• budget2nd = budget - budget1st = 40 − 36 = 4 in this example

• 4 solutions are generated by giving tint1 , tint2 , tint3 , tint4 to b

• We equally generate parameters on ∆M−1, removing (0,1) and (1,0)
Results on f1 (D-Sphere) with N = 2 in bbob-biobj
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• tint1 = (0.2,0.8)
• tint2 = (0.4,0.6)
• tint3 = (0.6,0.4)
• tint4 = (0.8,0.2)
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Advantages and disadvantages of TPB

Advantages ,
1. TPB can use any SOTA single-objective black-box optimizer

2. TPB can exploit the structure of the PS set

3. TPB is faster than model-based optimizers, e.g., ParEGO [Knowles 06]

Disadvantages /
1. The poor anytime performance as in most two-phase approaches

• They can obtain only a poor-quality solution set when they stop

before reaching the maximum budget [Dubois-Lacoste 11]

• But, this is true for most model-based optimizers (due to the LHS)

2. It performs poorly when the PS topology cannot be a simplex

• The 15/55 unimodal bbob-biobj problems would be OK

• The 40/55 multimodal bbob-biobj problems would be NG

Joshua D. Knowles: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems.

IEEE Trans. Evol. Comput. 10(1): 50-66 (2006)

Jérémie Dubois-Lacoste, Manuel López-Ibáñez, Thomas Stützle: Improving the anytime behavior of two-phase local search. Ann. Math.

Artif. Intell. 61(2): 125-154 (2011)
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Experimental setup

• All experiments were conducted using COCO [Hansen 21]

• The 55 bbob-biobj problems [Brockhoff 22] with N ∈ {2,3,5,10,20}

• ICOCO: The uncrowded HV based on the unbounded external arch.

• When none of objective points dominates the reference point z,

ICOCO is based on the smallest distance to the ROI defined by z

• We compare TPB with HMO-CMA-ES [Loshchilov 16] and ...

• ParEGO [Knowles 06], MOTPE [Ozaki 20], K-RVEA [Chugh 18],

KTA2 [Song 21], and EDN-ARMOEA [Guo 22]

• Maximum fevals: 20 ×N , 30 ×N , and 40 ×N
• Parameter setting for TPB:

• The number of weight vectors K in the 1st phase: 3

• The budget ratio in the 1st phase r1st: 0.9

• The degree of a Bézier simplex D: 2

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, Dimo Brockhoff: COCO: a platform for comparing continuous

optimizers in a black-box setting. Optim. Methods Softw. 36(1): 114-144 (2021)

Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Tea Tušar: Using Well-Understood Single-Objective Functions in Multiobjective Black-Box

Optimization Test Suites. Evol. Comput. 30(2): 165-193 (2022)
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Results on the 55 bbob-biobj problems with N = 2 (max. fevals = 40)

HMO-CMA-ES shows the best anytime performance

• ParEGO is the best optimizer at 20 ×N fevals

• TPB is the second-worst optimizer
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Results on the 55 bbob-biobj problems with N = 5 (max. fevals = 100)

TPB performs better than the five model-based optimizers

• HMO-CMA-ES performs the best
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Results on the 55 bbob-biobj problems with N = 10 (max. fevals = 200)

TPB performs better than HMO-CMA-ES at 20 ×N fevals

• TPB outperforms the model-based optimizers at anytime

• Because KTA2 was too time-consuming, it was removed
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Results on the 55 bbob-biobj problems with N = 20 (max. fevals = 400)

TPB performs better than HMO-CMA-ES at 20 ×N fevals

• Because ParEGO and EDN were time-consuming, they were removed
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Results on f1, f28, f46, f53 with N = 10 (max. fevals = 200)

We did not expect the results on f53 with no simplex structure

• The Bézier simplex can represent only a standard simplex
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Conclusion

Proposed: A Two-Phase framework with a Bézier simplex-based

interpolation method (TPB)

• The 1st phase runs BOBYQA on K scalar optimization problems

• The 2nd phase interpolates the K solutions by the Bézier simplex

• It can describe the PS set under under certain conditions

• The performance of TPB was investigates on bbob-biobj

• TPB performs better than HMO-CMA-ES for N ≥ 10 at max. fevals

• TPB performs better than the five model-based optimizers for N ≥ 5
• TPB is computatoinally cheaper than the five optimizers

TPB can give a new perspective for expensive MO optimization

• A non-Bayesian optimization approach

• The use of the Bézier simplex for MO optimization

Future work

• An extension of TPB to optimization with more than 2 objectives

• An extension of TPB to initialize the population in EMO
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Average computation time of the optimizers over the 15 instances of f1

• TPB is the fastest for N ≥ 5
• Meta-model-based optimizers are generally time-consuming

• Especially for a larger N
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Comparison of 7 optimizers on bbob-biobj for N. var N = 10 [Brockhoff 21]

HMO-CMA-ES performs the best for 102 ×N (= 1000) fevals

• HMO-CMA-ES performs well for computationally expensive opt.

Dimo Brockhoff, Baptiste Plaquevent-Jourdain, Anne Auger, Nikolaus Hansen: DMS and MultiGLODS: black-box optimization benchmark-

ing of two direct search methods on the bbob-biobj test suite. GECCO Companion 2021: 1251-1258



Definition of the Bézier simplex (M : Num. obj, N : Num. var, D: Degree)

The standard (M − 1)-simplex

∆M−1
=

⎧
⎪⎪
⎨
⎪⎪
⎩

t = (t1, . . . , tM ) ∈ RM
∣

M

∑

m=1

tm = 1, tm ≥ 0

⎫
⎪⎪
⎬
⎪⎪
⎭

• E.g., t = (0.2,0.8) and t = (1,0) for M = 2

A set of non-negative integers

NM
D ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

d = (d1, . . . , dM ) ∈ NM
∣

M

∑

m=1

dm = D

⎫
⎪⎪
⎬
⎪⎪
⎭

• E.g., N2
2 = {d = (d1, d2) ∈ N2∣d1 + d2 = 2} = {(2,0), (1,1), (0,2)}

A Bézier simplex, b ∶∆M−1 → RN , b ∶ t↦ b(t)

b(t) = ∑

d∈NM
D

(
D

d
)tdpd

• pd ∈ R
N is a control point , e.g., p

(2,0) = (4.1,−3.2), p(1,1) = (2.6,0)

• (Dd) ∶=
D!

d1!...dM !
is a multinomial coefficient, e.g., ( 2

(2,0))

• td ∶= td1

1 . . . tdM

M is a monomial for each t and d, e.g., t(2,0) = (t21, t02)



Example: Bézier simplex with M = 2 (N. obj), N = 2 (N. var), and D = 2

b(t) = ∑

d∈NM
D

(
D

d
)tdpd,

= (
2

(2,0)
)t21t

0
2p(2,0) + (

2

(1,1)
)t11t

1
2p(1,1) + (

2

(0,2)
)t01t

2
2p(0,2)

= t21p(2,0) + 2t1t2p(1,1) + t
2
2p(0,2)
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b(t5)
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• p(2,0) = (0.1,0.7)

• p(1,1) = (0.8,0.8)

• p(0,2) = (0.9,0.2)

• t1 = (1,0),b(t1) = (0.1,0.7)
• t2 = (0.75,0.25),b(t2) ≈ (0.41,0.71)
• t3 = (0.5,0.5),b(t3) ≈ (0.65,0.63)
• t4 = (0.25,0.75),b(t4) ≈ (0.81,0.46)
• t5 = (0,1),b(t5) = (0.9,0.2)
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