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ABSTRACT
While a large number of adaptive Di�erential Evolution (DE) algo-
rithms have been proposed, their Parameter Adaptation Methods
(PAMs) are not well understood. We propose a Target function-
based PAM simulation (TPAM) framework for evaluating the track-
ing performance of PAMs. �e proposed TPAM simulation frame-
work measures the ability of PAMs to track prede�ned target param-
eters, thus enabling quantitative analysis of the adaptive behavior
of PAMs. We evaluate the tracking performance of PAMs of widely
used �ve adaptive DEs (jDE, EPSDE, JADE, MDE, and SHADE) on
the proposed TPAM, and show that TPAM can provide important
insights on PAMs, e.g., why the PAM of SHADE performs be�er
than that of JADE, and under what conditions the PAM of EPSDE
fails at parameter adaptation.
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1 INTRODUCTION
Continuous black-box optimization is the problem of �nding a D-
dimensional solution x = (x1, ...,xD )T ∈ RD that minimizes an
objective function f : RD → R without explicit knowledge of the
form or structure of f . Di�erential Evolution (DE) is one of most ef-
�cient Evolutionary Algorithms (EAs) for continuous optimization
[17], and has been applied to many real-world problems [4].

While the fact that the search performance of EAs is strongly
in�uenced by its control parameter se�ings has been widely ac-
cepted in the evolutionary computation community for decades
[6, 12], it was initially reported that the search performance of DE
was fairly robust with respect to control parameter se�ings [17].
However, later work showed that in fact, the performance of DE
was signi�cantly a�ected by control parameter se�ings [2]. As a
result, research in automated parameter control methods for DE
has become an active area of research since around 2005. In recent
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years, the DE community has focused on adaptive control param-
eter methods [4] which adjust control parameters online during
search. Some representative adaptive DEs are jDE [2], JADE [24],
EPSDE [13], MDE [11], and SHADE [19]. Almost all adaptive DEs
adjust two control parameters: the scale factor F ∈ [0,1) and the
crossover rate C ∈ [0,1] (For details, see Section 2).

However, while many adaptive DEs have been proposed, their
Parameter Adaptation Methods (PAMs) are poorly understood.
Previous work on adaptive DEs such as [2, 11, 13, 19, 24] has tended
to propose a novel adaptive DE variant and evaluate its performance
on some benchmark functions, but analysis of their adaptation
methods have been minimal. Several previous works have tried to
analyze PAMs in adaptive DE [3, 5, 16, 22, 24, 25]. However, these
previous analyses have been mostly limited to plots of changes in
F and C values during a typical run on benchmark functions, and
the analysis has been limited to qualitative descriptions such as “in
this adaptive DE the meta-parameter of C quickly drops down to
[C1,C2] a�er several iterations on benchmark function f1, while
it gradually increases to [C3,C4] on benchmark function f2”. �is
previous approach (plo�ing parameter values) is fundamentally
limited because they can only lead to very weak, qualitative conclu-
sions of the form: (1) “for a given problem, parameter values for a
given PAM depend on the current state of the search” (2) “di�erent
PAMs lead to di�erent parameter trajectories” (3) “the parameter
trajectory of a given PAM is problem-dependent”. In other words,
the behavior and limitations of PAMs for DE are currently poorly
understood, and previous analyses have not yielded signi�cant
insights into fundamental questions such as: “why does PAM1 per-
form be�er than PAM2 on a given problem?”. �is situation is not
unique to the DE community – Karafotias et al. [12] have pointed
out the lack of the analysis of adaptation mechanisms in EAs. For
example, even in the �eld of Evolution Strategies (ESs) [8], where
step size adaptation has been studied since the earliest days of the
�eld of evolutionary computation, such adaptation mechanisms are
far from being well-understood [9].

In fact, in previous work, the crucial term adaptation tends not to
be clearly de�ned at all, which leaves one with li�le alternative but
to compare search algorithm performance (as a proxy for how well
the proposed adaptive mechanism works [5, 16, 25]). It is di�cult to
de�ne metrics for adaptation that can be applied to a wide range of
control parameter adaptation mechanisms. Although some studies
propose alternative metrics (e.g., the number of improvements
[16, 22]) to analyze PAMs, they cannot directly investigate PAMs
and do not provide su�cient information.

One possible approach to quantitatively analyzing adaptation is
to compare the control parameter values generated by a PAM to
an “optimal” parameter value schedule. However, in general, such



GECCO ’17, July 15–19, 2017, Berlin, Germany Ryoji Tanabe and Alex Fukunaga

theoretical, optimal parameter schedules are di�cult to obtain and
only known for very simple functions [1, 8]. A recent simulation-
based approach seeks to approximate optimal adaptive behavior
[18], but this is computationally very expensive and so far has been
limited to a 1-step, greedy approximation. Furthermore, although
comparisons of a PAM vs. optimal adaptive processes can allow an
evaluation of the resulting search performance, such an approach
does not necessarily yield insights that allows to understand why
one PAM generates parameter adaptation histories closer to an op-
timal parameter adaptation schedule than another. �us, it seems
that there are signi�cant obstacles to analyzing parameter adap-
tation as the problem of generating parameter trajectory which
matches a static, a posteriori optimal parameter history.

In this paper, we take another approach which treats pa-
rameter adaptation as a problem of adapting to a dynamic
environment which is constantly changing. More speci�-
cally, we propose a novel, empirical model which treats the
control parameter values modi�ed by the PAM (in the case
of DE, the F andC values) as the “output” of the PAM, where
this output is evaluated by comparison against a prespeci-
�ed “target” function which changes over time, i.e., we as-
sess PAMs by measuring how well they generate control pa-
rameter values which track a given, “target function”.

We propose TPAM (Target function-based PAM simulation), a
simulation based approach to analyzing the behavior of PAMs
which measures how e�ectively a PAM is able to track a given,
ideal “target” function1. Note that this paper focuses on parameter
adaptation methods of adaptive DEs for F andC , not adaptive DEs as
in [18]. In general, the term “adaptive DE” denotes a complex algo-
rithm composed of multiple algorithm components. For example,
“L-SHADE” [21] consists of four key components: (a) current-to-
pbest/1 mutation strategy, (b) binomial crossover, (c) the “SHADE
method” for adapting parameters F and C (i.e., PAM-SHADE), and
(d) linear population size reduction strategy. In this paper, we are
not interested in “L-SHADE”, the complex DE algorithm composed
of (a), (b), (c), and (d) – we want to focus on analyzing (c), the PAM,
in isolation. �erefore, we extracted and studied only the PAM from
each adaptive DE variant for our study. Although many PAMs have
been proposed in the literature, to our knowledge, there has been
no previous work which analyzed the behavior of PAMs in isolation.
Our TPAM approach de�nes an ideal target trajectory and then
performs a simulation which measures how closely a PAM tracks
this target trajectory. �is allows us to ask: “how much be�er is
PAM1 vs. PAM2 with respect to tracking a target control parameter
trajectory?”, i.e., our approach enables a quantitative comparison
of the behavior of di�erent PAMs, which yields new insights into
why some PAMs lead to be�er DE performance than others.

2 PAMS IN ADAPTIVE DE
�is section �rst provides a brief overview of DE [17] and then
reviews �ve PAMs in adaptive DE.

In DE, a population P = {x1, ...,xN } is represented as a set of real
parameter vector x i = (x i1, ...,x

i
D )

T, i ∈ {1, ...,N }, where N is the

1Of course, the proposed TPAM can simulate a nondynamic environment using a
target function such as д (nt ) = 0.5 and approximate optimal parameter adaptation
process which is experimentally obtained by GAO [18]. See Section 3.1.

population size. A�er initialization of the population, for each itera-
tion t , for each x i,t , a mutant vectorvi,t is generated from the indi-
viduals in P t by applying a mutation strategy. �e most commonly
used mutation strategy is rand/1: vi,t = xr1,t + Fi,t (xr2,t − xr3,t ).
�e indices r1, r2, r3 above are randomly selected from {1, ...,N }\{i}
such that they di�er from each other. �e scale factor Fi,t ∈ (0,1]
controls the magnitude of the di�erential mutation operator.

�en, the mutant vector vi,t is crossed with the parent x i,t
in order to generate a trial vector ui,t . Binomial crossover, the
most commonly used crossover method in DE, is implemented
as follows: For each j ∈ {1, ...,D}, if rand[0,1] ≤ Ci,t or j = jr
(where, rand[0,1] denotes a uniformly generated random number
from [0,1], and jr is a decision variable index which is uniformly
randomly selected from {1, ...,D}), then ui,tj = vi,tj . Otherwise,
ui,tj = x i,tj . Ci,t ∈ [0,1] is the crossover rate.

A�er all of the trial vectors ui,t , i ∈ {1, ...,N } have been gener-
ated, each individual x i,t is compared with its corresponding trial
vector ui,t , keeping the be�er individual in the population P t , i.e.,
if f (ui,t ) ≤ f (x i,t ), x i,t+1 = ui,t . Otherwise, x i,t+1 = x i,t .

Five representative, adaptive DE algorithms which adapt the
scale factor F and the crossover rate C are jDE [2], EPSDE [13],
JADE [24], MDE [11], and SHADE [19]. See Algorithm S.1∼ S.5 in
the supplementary material for complete descriptions of the �ve
PAMs described below:

De�nition 2.1. Trial vector success/failure We say that a genera-
tion of a trial vector is successful if f (ui,t ) ≤ f (x i,t ). Otherwise,
we say that the trial vector generation is a failure.

• PAM-jDE: A PAM in jDE [2] assigns a di�erent set of parameter
values Fi,t and Ci,t to each x i,t in P t . For t = 1, the parameters
for all individuals x i,t are set to Fi,t = 0.5 and Ci,t = 0.9. In
each iteration t , each parameter is randomly modi�ed (within a
pre-speci�ed range) with some probability:

F ′i,t =



rand[0.1,1] if rand[0,1] < τF
Fi,t otherwise

(1)

C ′i,t =



rand[0,1] if rand[0,1] < τC
Ci,t otherwise

(2)

where τF and τC ∈ (0,1] are control parameters for parameter
adaptation. Each individual x i,t generates the trial vector using F ′i,t
and C ′i,t . F ′i,t and C ′i,t are kept for the next iteration (i.e., Fi,t+1 =
F ′i,t and Ci,t+1 = C ′i,t ) only when a trial is successful.
• PAM-EPSDE: PAM-EPSDE [13] uses an “F -pool” and a “C-pool”
for parameter adaptation of F and C , respectively. �e F -pool is
a set of F values, e.g., {0.4, 0.5 ,0.6, 0.7, 0.8, 0.9}, and the C-pool
is a set of the C values, e.g., {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
At the beginning of the search, each individual x i,t is randomly
assigned values for Fi,t andCi,t from each pool. During the search,
successful parameter sets are inherited by the individual in the next
iteration. Parameter sets that fail are reinitialized.
• PAM-JADE: PAM-JADE [24] uses two adaptive meta-parameters
µF ∈ (0,1] and µC ∈ [0,1] for parameter adaptation. At the begin-
ning of the search, µF and µC are both initialized to 0.5, and adapted
during the search. In each iteration t , Fi,t and Ci,t are generated
according to the following equations: Fi,t = randc(µF ,0.1) and
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Ci,t = randn(µC ,0.1). randc(µF ,σ ) are values selected randomly
from a Cauchy distribution with location parameter µF and scale
parameter σ . randn(µC ,σ 2) are values selected randomly from a
normal distribution with mean µC and variance σ 2. When Fi,t > 1,
Fi,t is truncated to 1, and when Fi,t ≤ 0, the new Fi,t is repeatedly
generated in order to generate a valid value. In case a value forCi,t
outside of [0,1] is generated, it is replaced by the limit value (0 or
1) closest to the generated value.

In each iteration t , successful F andC parameter pairs are added
respectively to sets SF ,t and SC,t . We will use S to refer to SF ,t or
SC,t wherever the ambiguity is irrelevant or resolved by context. At
the end of the iteration, µF and µC are updated as: µF = (1−c ) µF +
c meanL (SF ,t ) and µC = (1 − c ) µC + c meanA (SC,t ), where the
meta-level control parameter c ∈ [0,1] is a learning rate, meanA (·)
is an arithmetic mean, and meanL (·) is a Lehmer mean which is
computed as: meanL (S ) =

∑
s ∈S s

2/
∑
s ∈S s .

• PAM-MDE: A parameter adaptation method in MDE [11] is sim-
ilar to PAM-JADE and uses the meta-parameters µF and µC for
parameter adaptation of F and C , respectively. In each iteration
t , Fi,t and Ci,t are generated as same with PAM-JADE respec-
tively. At the end of each iteration, µF and µC are updated as: µF =
(1−cF )µF +cF meanP (SF ,t ) and µC = (1−cC )µC+cC meanP (SC,t ),
where cF and cC are uniformly selected random real numbers
from (0.0,0.2] and (0.0,0.1], respectively. In contrast to JADE, the
learning rates cF and cC are randomly assigned in each iteration t .
meanP (·) is a power mean: meanP (S ) =

( 1
|S |

∑
s ∈S s

1.5
) 1

1.5

• PAM-SHADE: PAM-SHADE [19] uses historical memories MF

andMC for parameter adaption of F andC , whereMF = (MF
1 , ...,M

F
H )T

and MC = (MC
1 , ...,M

C
H )T. Here, H is a memory size, and all ele-

ments in MF and MC are initialized to 0.5. In each iteration t , Fi,t
and Ci,t used by each individual x i,t are generated by randomly
selecting an index ri,t from {1, ...,H }, and then applying the follow-
ing formulas: Fi,t = randc(MF

ri,t ,0.1) and Ci,t = randn(MC
ri,t ,0.1)

If the values generated for Fi and Ci are outside the range [0,1],
they are adjusted/regenerated according to the procedure described
above for PAM-JADE.

At the end of the iteration, the memory contents in MF and MC

are updated using the Lehmer mean as follows: MF
k = meanL (SF ,t )

and MC
k = meanL (SC,t ). An index k ∈ {1, ...,H } determines the

position in the memory to update. At the beginning of the search, k
is initialized to 1. Here, k is incremented whenever a new element
is inserted into the history. If k > H , k is set to 1.

3 TPAM SIMULATION FRAMEWORK
As described in Section 2, for each iteration t , PAMs in adaptive
DE assign Fi,t , Ci,t to each individual x i,t in P t = {x1,t , ...,xN ,t }.
�en, each trial vector ui,t is generated using a mutation strategy
with Fi,t and a crossover method with Ci,t . Finally, at the end of
iteration t , a set of successful parameters is used for parameter
adaptation. In summary, for parameter adaptation, PAMs iterate
the following three procedures: (1) generating a control parameter
set {F ,C}, (2) deciding whether {F ,C} is successful or failed, and
(3) doing something which in�uences future parameter generation
step (e.g., updating some internal data structure).

Algorithm 1: �e proposed TPAM framework
1 S total ← 0, t ← 1, initialize meta-parameters of a PAM;
2 while t < tmax do
3 θ target

t ← д (t );
4 for i ∈ {1, ..., N } do
5 Sampling θi,t using the PAM;
6 for i ∈ {1, ..., N } do
7 if rand[0, 1] ≤ pa (θi,t ) then
8 si,t ← TRU E , S total ← S total + 1;
9 else

10 si,t ← FALSE ;

11 Update the meta-parameters of the PAM using {s1,t , ..., sN ,t };
12 t ← t + 1;

13 return r succ = S total
tmax×N ;

A key observation is that in most PAMs for DE, including all of
the PAMs reviewed in Section 2, steps (1)–(3) above only depend
on whether each trial vector generation is a success or a failure,
according to De�nition 2.1. �ey do not depend on the absolute
objective function values of the trial vectors. �is means that ana-
lyzing PAM behavior does not require modeling the absolute objective
function values of the trial vectors which are generated by the con-
trol parameter trajectory output by a PAM – a model of trial vector
success/failure is su�cient. �is allows us to greatly simplify the
modeling framework.

�us, parameter adaptation of PAMs in adaptive DE can be
simulated by using a surrogate model deciding the success or failure
in the procedure (2), instead of the actual solution evaluation by the
objective function. In the proposed TPAM framework, this decision
is made based on target parameters θ target

1 , ...,θ
target
tmax generated by

a prede�ned target function д which PAMs should track. TPAM
only evaluates the tracking performance of PAMs to the target
parameters, independent from the variation operators used and test
functions (e.g., the Sphere function) for benchmarking EAs.

Algorithm 1 shows the TPAM framework. �e parameter θ rep-
resents one of the following three parameters: (i) F , (ii)C , (iii) a pair
of F andC . At the beginning of the simulation, meta-parameters of
a PAM are initialized. �en, the following procedures are repeated
until reaching the maximum number of iterations tmax.

�e target parameter θ target
t in each iteration t is given by the

target function д (Algorithm 1, line 3), where д is an arbitrarily
de�ned function of t . �ree target functions used in our study will
be described in Section 3.1. It is worth noting that д can also be
de�ned as a function of the number of function evaluations.

�e parameter θi,t , i ∈ {1, ...,N } is generated according to each
PAM (Algorithm 1, line 4 ∼ 5). A�er all the parameters have
been generated, they are probabilistically labeled as successful or
failed (Algorithm 1, line 6 ∼ 10). In this paper, θi,t is treated as
the successful parameter with an acceptance probability pa (θi,t ) ∈
[0,pmax

a ] de�ned as follow:

pa (θi,t ) = max(−αdi,t + pmax
a ,0) (3)

where di,t = |θi,t − θ
target
t |, and di,t is the distance between θi,t

and θ target
t . �e two parameters α > 0 and pmax

a ∈ [0,1] control
the di�culty of the model of the TPAM simulation. α adjusts a
slope of probability in Eq. (3), and pmax

a is the maximum probability
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of pa (θi,t ) – a larger α value and a smaller pmax
a value makes a

simulation model di�cult. In Eq. (3), the smaller the distance di,t ,
the acceptance probability pa (θi,t ) is linearly increasing. In fact,
when di,t = 0, pa (θi,t ) takes the maximum probability pmax

a .
At the end of each iteration t , the meta-parameters of the PAM

are updated according to the binary decision of success or failure
(Algorithm 1, line 11). A performance indicator in the proposed
TPAM is the percentage of successful parameters (r succ ∈ [0,1]) in
the simulation (Algorithm 1, line 12). A higher r succ represents that
the PAM is able to track a given target parameters θ target

1 , ...,θ
target
tmax ,

and thus its tracking performance is good.

3.1 Target function д for TPAM
Target parameters θ target

1 , ...,θ
target
tmax in TPAM are given by a target

function д. �us, the information of PAMs gained by the TPAM
simulation signi�cantly depends on which types of д is used. In this
paper, we introduce the following three target functions (дlin, дsin,
and дran). Below, nt ∈ (0,1] is the number of sampling parameters
until iteration t divided by the maximum number of sampling N ×
tmax. �e range of θ and θ target were set to [0.0,1.0] and [0.1,0.9]
respectively.

�e linear function based target function дlin is formulated as
follows:

дlin/inc (nt ) = 0.4 nt + 0.5 (4)

дlin/dec (nt ) = −0.4 nt + 0.5 (5)

On дlin/inc, the target parameter θ target is linearly increasing from
0.5 to 0.9, and θ target is linearly decreasing from 0.5 to 0.1 on
дlin/dec. In Eq. (4) and (5), we set the slope value to 0.4 such that
θ target ∈ [0.1,0.9]. �e function дlin is the simplest target function
for the TPAM simulation. By applying PAMs to the TPAM simu-
lation with дlin/inc and дlin/dec, whether they are able to track the
monotonically changing target parameters or not can be investi-
gated. Also, by comparing the results on the two linear functions,
the hidden bias of parameter adaptation in PAMs can be found out.

We de�ne the sinusoidal function based target function дsin as
follows:

дsin (nt ) = 0.4 sin(ω nt ) + 0.5 (6)

where the amplitude value and the initial phase to 0.4 and 0.5
respectively. �e angular frequency ω > 0 in Eq. (6) controls a
change amount of the target parameter by one iteration. A larger
ω value makes a simulation model with дsin di�cult for PAMs
to track the target parameters. By applying PAMs to the TPAM
simulation with дsin, the tracking performance of PAMs on the
target parameter periodically changing can be analyzed.

Finally, the target function дran simulating the random walk is
formulated as follows (t ≥ 2):

дran (nt ) = д
ran (nt−1) + s rand[−1,1] (7)

where for t = 1, дran (n1) = 0.5. rand[−1,1] returns a uniformly
distributed random number in the range [−1,1]. �e step size for
the random walk s ∈ (0,1] adjusts the amount of the perturbation
by one iteration. �at is, s controls the di�culty of tracking the
target parameters in the TPAM simulation with дran. When a target

parameter generated according to Eq. (7) exceeds the boundary
values 0.1 or 0.9, it is re�ected as follows:

дran (nt ) =

{
2 × 0.9 − дran (nt ) if дran (nt ) > 0.9
2 × 0.1 − дran (nt ) if дran (nt ) < 0.1

(8)

In contrast to дsin de�ned in Eq. (6), the target parameters gener-
ated by дran irregularly change. By applying PAMs to the TPAM
simulation with дran, the tracking performance of PAMs on the
target parameter irregularly changing can be investigated.

3.2 Discussion on TPAM
As discussed in Section 1, previous work on PAMs for adaptive
DE have been limited to relatively shallow, qualitative discussions
about search performance. In contrast, comparing the r succ val-
ues obtained using TPAM allows quantitative comparisons regard-
ing the adaptive capability of PAMs, e.g., r succ (PAM-JADE) is X%
higher than r succ (PAM-jDE), so r succ (PAM-JADE) is X% more suc-
cessful than r succ (PAM-jDE) with respect to tracking target control
parameter values, and therefore a “be�er” adaptive mechanism in
that sense.

�e selection/replacement policy in DE is deterministic [15, 17].
A trial vectorui,t which is more �t that its parentx i,t (i.e., f (ui,t ) ≤
f (x i,t )) always replaces its parent, x i,t+1 = ui,t . TPAM assumes
and exploits this deterministic replacement policy. �us, TPAM can
not be directly applied to EAs with nondeterministic replacement
policies such as GAs with the roule�e wheel selection method.

It is important to keep in mind that TPAM is a simulation frame-
work for evaluating the ability of a given PAM to track a given
target function д – TPAM is not a benchmark function for adaptive
DEs. �us, “iterations” and “number of (parameter) samples” refer
only to the corresponding operations in Algorithm 1, and do not
correspond 1-to-1 to corresponding/similar terms related to amount
of search performed (number of individuals) in a complete DE algo-
rithm. �e reason we execute parameter sampling for some number
of iterations / number of samples is to evaluate PAM behavior over
a su�ciently large window of activity – this does not correspond
to any speci�c number of search steps executed by a DE with that
given PAM.

According to Eq. (3), the further θ is from θ target, the lower
its probability of success, pa (θ ). �is is intended to model the
assumption that as |θ − θ target | increases, θ becomes less and less
appropriate for the current state of the search, and hence it becomes
less likely for a trial vector generated using θ to successfully replace
its parent. Below, we investigate the validity of this assumption.

Figure 1 shows all of the parameter values (including success-
ful/unsuccessful values) generated by a run of an adaptive DE algo-
rithm using the current-to-pbest/1/bin and PAM-JADE (i.e., “JADE”)
on the 10-dimensional Rosenbrock function (f8 in the BBOB bench-
marks [10]). Figure 1 also shows smoothing spline curves for the
successful parameter values. PAM-JADE generates F and C values
based on random numbers from a Cauchy distribution and a normal
distribution, respectively (see Section 2), and so a diverse set of
parameters is generated. It can be seen that F and C values closer
to the spline curves tend to result in more successes.

To verify that control parameter values closer to the spline curve
tend to result in more successful trial vectors, Figure 2 shows the
trial vector success probability as a function of the distance of the
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Figure 1: All of the parameter values (F andC ) generated by an adap-
tive DE algorithm using the current-to-pbest/1/bin and PAM-JADE
on the 10-dimensional f8 (Rosenbrock function) in the BBOB bench-
marks. �e red and black points are successful and failed param-
eters respectively. We also show smoothing spline curves for the
successful parameter values. Data from the median run is shown.
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Figure 2: Trial vector success probability as a function of the dis-
tance of the F (le�) and C (right) parameters from the spline
curve on a run of an adaptive DE algorithm using the current-to-
pbest/1/bin and PAM-JADE on the 10-dimensional f8 benchmark
function. Data from the all 15 run is shown.

F (le�) and C (right) parameters from the spline curve on a run of
the adaptive DE using the current-to-pbest/1/bin and PAM-JADE
on the 10-dimensional f8 benchmark function. For both F , andC , it
can be seen that the success probability tends to drop monotonically
as the distance from their respective spline curves increases. �e
above experiments shows that the assumption that the probability
of generating successful trial vectors is highly correlated with the
ability to generate control parameters values θ which accurately
track a target parameter is justi�able. �us, Eq. (3) is a reasonable
model for the success probability pa (θi,t ). Although the linear
function is used in Eq. (3) in this paper, future work will investigate
other types of functions (e.g., the gamma distribution function).

4 EVALUATING PAMS USING TPAM
4.1 Experimental settings
We investigate the tracking performance of PAMs of widely used
�ve adaptive DEs (PAM-jDE, PAM-JADE, PAM-EPSDE, PAM-MDE,
and PAM-SHADE) described in Section 2 on the TPAM framework.

�e population size N was set to 50. �e maximum number of it-
erations tmax was 1 000. �e 101 independent runs were performed.
For each PAM, we used the control parameter value suggested
in the original papers as follows: τF = τC = 0.1 for PAM-jDE,
c = 0.1 for PAM-JADE, and H = 10 for PAM-SHADE. In the origi-
nal implementation, PAM-jDE generates the F values in the range
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Figure 3: TPAM simulation results for Target function дlin/inc and
дlin/dec. �e x-axis shows pmax

a in Eq. 3, and the y-axis shows the
mean r succ for 101 runs (higher is better).

[0.1,1] as described in Eq. (1), but for a fair comparison we mod-
i�ed the range to [0,1]. For the same reason with PAM-jDE, we
set F -pool = {0.0,0.1, ...,0.9,1.0} and C-pool = {0.0,0.1, ...,0.9,1.0}
for PAM-EPSDE. �ese modi�cations allow PAM-jDE and PAM-
EPSDE to generate the F and C values in the range [0,1]. Also,
for a fair comparison, the initial Fi,t and Ci,t values for PAM-jDE
and PAM-EPSDE were set to 0.5 as with the initial values of the
meta-parameters of PAM-JADE, PAM-MDE, and PAM-SHADE.
α and pmax

a in Eq. (3) are the two control parameters for the
proposed TPAM. In our preliminary experiments, we con�rmed that
the r succ values of all the �ve PAMs are monotonically decreasing
when α increasing. Due to space constraints, we show only the
results of the TPAM simulation with α = 1. On the other hand, we
used the value of pmax

a ∈ {0.1,0.2, ...,1}.

4.2 Tracking results for each target function
Here, we evaluate the tracking performance of the �ve PAMs on the
TPAM simulation with the three target functions дlin, дsin, and дran.
We investigated the three types of parameters (i) C , (ii) F , and (iii)
a pair of F and C , but their qualitative tendency is not signi�cantly
di�erent each other, and so we provide only the results of (i) C .

4.2.1 Results on дlin. Figure 3 shows the results of running the
TPAM simulations on the target functions дlin/inc (Eq. (4)) and
дlin/dec (Eq. (5)). �e target functions дlin/inc and дlin/dec simply
linearly increase/decrease the target parameter θ target, respectively.
�ere is very li�le di�erence among the success rates of PAM-jDE,
PAM-EPSDE, and PAM-JADE on дlin/inc and дlin/dec. In contrast,
PAM-MDE and PAM-SHADE tend to have a lower success rate on
дlin/dec compared to дlin/inc for pmax

a ≥ 0.3. In particular, PAM-
SHADE has the worst tracking performance among all PAMs for
pmax
a ∈ [0.8,1.0] on дlin/dec. A speculative explanation for this

is that for parameter updates, PAM-MDE and PAM-SHADE use
the power mean and Lehmer mean respectively, which tend to
be pulled up to higher values, unlike arithmetic means. �us, on
дlin/dec, where the target parameterθ target monotonically decreases,
PAM-MDE and PAM-SHADE have di�culty tracking the target,
resulting in relatively low success rates compared to дlin/inc.

For both дlin/inc and дlin/dec, r succ tends to increase monotoni-
cally for all PAMs as pmax

a increases from 0 to 1. At pmax
a = 0.1, all
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Figure 4: TPAM simulation results for Target function дsin for ω ∈ {10, 20, 30, 40}. �e x-axis shows pmax
a in Eq. 3, and the y-axis shows the

mean r succ for 101 runs (higher is better).
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Figure 5: TPAM simulation results for Target function дran for pmax
a ∈ {0.1, 0.2, 0.3, 1}. �e x-axis shows the step size s of random walk, and

the y-axis shows the mean r succ for 101 runs (higher is better).

PAMs have almost the same r succ. As pmax
a increases, the relative

success rate of PAM-jDE compared to other PAMs decreases. PAM-
jDE reinitializes the parameter values in the range [0,1] with some
certain probability (see Section 2), and as a result, the increase of its
success rate is not as large as the remaining PAMs. �e relative suc-
cess rate of PAM-EPSDE increases as pmax

a increases, likely because
PAM-EPSDE continues to use the same parameter value as long as
it keeps succeeding, which is a good �t for pmax

a = 1. In contrast,
for low maximum acceptance probabilities such as pmax

a = 0.1,
PAM-JADE, PAM-MDE, and PAM-SHADE had the highest average
success rate. �is is likely because PAM-JADE, PAM-MDE, and
PAM-SHADE generate parameter values which are close to values
which have recently succeeded, so even if pmax

a is low, these ap-
proaches allocate a signi�cant fraction of their samples around the
target parameter values.

4.2.2 Results on дsin. Figure 4 shows the results of running
TPAM using the target function дsin (Eq. (6)), for the angular fre-
quency ω ∈ {10,20,30,40}. For all PAMs, r succ decreases as ω
increases. �is is because asω increases, the target parameter value
changes more rapidly, making it more di�cult for the PAMs to
track the target parameters.

For all values of ω, PAM-EPSDE achieves the highest r succ for
pmax
a ∈ [0.9,1]. However, as pmax

a decreases, PAM-EPSDE performs
worse than other PAMs, most likely due to the same reason as
discussed in Section 4.2.1.

PAM-SHADE has the worst performance among the PAMs for
ω ≥ 20 and pmax

a ∈ [0.8,1.0]. However, the lower the value of
pmax
a , the be�er PAM-SHADE performs compared to other PAMs,

and this trend strengthens as ω (the rate of change of the target
parameter value) increases – in particular, note that the di�erence
between r succ (PAM-SHADE) and r succ (PAM-JADE) increases with
ω. In other words, the more di�cult it is to follow the target value,
the be�er PAM-SHADE performs compared to other PAMs.

4.2.3 Results on дran. Figure 5 shows the results of running
TPAM using the target function дran (Eq. (7)). As the step size s
increases, the rate of the random walk increases, making it increas-
ingly more di�cult for a PAM to track the target parameter. Due to
space constraints, we only show results for pmax

a ∈ {0.1,0.2,0.3,1}.
Figure 5 shows that as s increases, r succ tends to decrease mono-

tonically for all PAMs. �us, similar to our observations for дsin

above, r succ tends to fall for all PAMs on дranas the rate of change
of the target parameter increases. PAM-EPSDE performs well when
pmax
a = 1, as it did for дlin and дsin. However, Figure 5 shows that

for pmax
a ∈ {0.1,0.2,0.3}, PAM-EPSDE has the worst tracking per-

formance. PAM-JADE has the best tracking performance among
all PAMs when s is small (< 0.05). However, for larger values of
s , i.e., for rapid random walks, PAM-SHADE outperforms PAM-
JADE. �e tracking performance of PAM-MDE was dominated by
PAM-JADE for all pmax

a and s .
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4.3 Detailed analysis of target tracking
behavior by each PAM

�e previous subsection presented aggregated target parameter
tracking performance over many runs on many se�ings. In this
section, we take a closer look at tracking behavior of individual runs
on given target functions. Figure 6 compares how PAM-JADE and
PAM-SHADE track each target function during a single run with
the median r succ value. We chose PAM-SHADE and PAM-JADE for
comparison because the results in Section 4.2 showed that these
PAMs had good target tracking performance on di�cult se�ings
(e.g., for low max acceptance probability pmax

a = 0.1).
Figures 6(a) and (b) show that when the target parameter values

change relatively smoothly, the µ value for PAM-JADE mostly
overlaps the target. In contrast, PAM-SHADE tracks the target
fairly closer while maintaining a broader band of values in its
historical memory M . In cases where the target values change
relatively smoothly and slowly (дlin, дsin with ω = 10, дran with
s ∈ {0.01,0.02,0.03}), it can be seen that PAM-JADE tracks the
target more closely than PAM-SHADE. �is illustrates and explains
why PAM-JADE exhibited be�er tracking performance than PAM-
SHADE when the target functions were “easy”.

In contrast, when the target parameter values change rapidly,
the µ values for PAM-JADE clearly fail to track the target, as can
bee seen in Figures 6(c) and (e). However, PAM-SHADE succeeds
in tracking the target parameter value fairly well on these di�cult
tracking problems. �us, although the historical memory M used
by PAM-SHADE prevents perfect tracking of the target parameter
values, the diversity of values in M enables PAM-SHADE to be
much more robust than PAM-JADE on rapidly changing target
values which are more di�cult to track.

Tanabe and Fukunaga conjectured that “SHADE allows more
robust parameter adaptation than JADE” [19], but this claim was not
directly supported either empirically or theoretically, and we know
of no work which has directly evaluated the robustness of PAMs.
Our results above provide direct empirical evidence supporting
the claim made in [19] regarding the comparative robustness of
PAM-SHADE. �is shows that TPAM is a powerful technique for
analyzing the adaptive behavior of a PAM.

4.4 How relevant are the target tracking
accuracy of PAMs to the search
performance of adaptive DEs?

We experimentally veri�ed that the target tracking accuracy mea-
sured in these experiments is consistent with the performance of
the adaptation mechanisms on standard benchmarks. We used
the noiseless BBOB benchmarks [10], comprised of 24 functions
f1, ..., f24. We evaluated all benchmarks with dimensionalities
D ∈ {2,5,10,20}. We allocated 104 × D function evaluations of
each run of each algorithm. �e number of trials was 15. For each
PAM, the hyperparameter values were set as recommended in the
original papers for each method (see Section 2 and 4.1). Following
the work of Pošı́k and Klema [14], the population size N was set to
5 × D for D ≥ 5, and 20 for D ≤ 3. For each method, we evaluated
eight di�erent mutation operators (rand/1, rand/2, best/1, best/2,
current-to-rand/1, current-to-best/1, current-to-pbest/1, and rand-
to-pbest/1). For current-to-pbest/1 and rand-to-pbest/1, the control
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Figure 6: Behavior of the meta-parameters (µ andM ) of PAM-JADE
and PAM-SHADE on the TPAM simulation with the various target
functions (pmax

a = 0.1). For PAM-SHADE, we plot all elements in M .
Data of a single run with the median r succ value out of the 101 runs
are shown. �e comparison on the same дran instance can be found
in Figure S.1 in the supplemental �le.
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Figure 7: Comparisons of the �ve PAMs with rand/1/bin and
current-to-pbest/1/bin on the BBOB benchmarks (D = 10). �ese
�gures show the bootstrapped Empirical Cumulative Distribution
Function (ECDF) of the number of function evaluations (FEvals) di-
vided by dimension for 50 targets in 10[−8. .2] for 10 dimensional all
functions (higher is better). For details of the ECDF, see a manual
of COCO software (http://coco.gforge.inria.fr/).

parameters were set to p = 0.05 and |A| = N [24]. We evaluated
both binomial crossover and Shu�ed Exponential Crossover (SEC)
[15, 20]. Since the BBOB benchmark set recommends the use of
restart strategies, we used the restart strategy of [23].

Figure 7 shows the results for DE using each of the �ve PAMs on
the 10-dimensional BBOB benchmarks (f1 ∼ f24) using rand/1 and
current-to-pbest/1 mutation and binomial crossover. �e results for
other operators and other dimensions are shown in Figures S.2 ∼
S.5 in the supplementary �le. �e results on the BBOB benchmarks
show that adaptive DE algorithms using PAM-SHADE perform well
overall. �is is consistent with the results in Section 4.2, which
showed that PAM-SHADE was able to track target parameter values
be�er than other PAMs when on di�cult target functions (дsin and
дran with rapidly varying target parameters). �is suggests that
target function tracking performance by the PAM in the TPAM
model is correlated with search performance of DE using that PAM
on standard benchmark functions, and target tracking results in
the TPAM model can yield insights which are relevant to search
algorithm performance.

5 CONCLUSION
�is paper explored the question: how can we de�ne and evalu-
ate “control parameter adaptation” in adaptive DE. We proposed
a novel framework, TPAM, which evaluates the tracking perfor-
mance of PAMs with respect to a given target function. While
previous analytical studies on PAMs (e.g., [3, 5, 16, 22, 24, 25]) have
been limited to qualitative discussions, TPAM enables quantita-
tive comparison of the control parameter adaptation in PAMs. To
our knowledge, this is the �rst quantitative investigation of the
parameter adaptation ability of PAMs. We evaluated the �ve PAMs
(PAM-jDE, PAM-JADE, PAM-EPSDE, PAM-MDE, PAM-SHADE)
of typical adaptive DEs [2, 11, 13, 19, 24] using TPAM simulations
using three target functions (дlin, дsin, and дran) . �e simulation
results showed that the proposed TPAM framework can provide im-
portant insights on PAMs. We also veri�ed that the results of PAMs
obtained by the TPAM simulation is mostly consistent with the
traditional benchmark methodology using the BBOB benchmarks
[10]. Overall, we conclude that the TPAM is a novel, promising
simulation framework for analyzing PAMs in adaptive DE.

We believe that the proposed TPAM framework can be applied
to analysis of PAMs in other EAs, such as step size adaptation
methods in ESs [9] and adaptive operator selection methods in GAs
with deterministic replacement policies [7]. �is is a direction for
future work. �e TPAM framework evaluates only the tracking
performance of PAMs, and thus other important aspects of PAM
behavior, such as parameter diversity, are not evaluated. Future
work will investigate simulation-based frameworks for evaluating
other aspects of PAM behavior, as well as an uni�ed, systematic
simulation framework (including TPAM) for analyzing the various
aspects of PAM behavior.
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