A Supplementary File for
“An Analysis of Control Parameters of MOEA/D Under Two Different Optimization Scenarios”

Ryoji Tanabe, Hisao Ishibuchi∗

Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China

Abstract
This is a supplementary file for “An Analysis of Control Parameters of MOEA/D Under Two Different Optimization Scenarios”.

*Corresponding author
Email addresses: rt.ryoji.tanabe@gmail.com (Ryoji Tanabe), hisao@sustc.edu.cn (Hisao Ishibuchi)

Preprint submitted to Applied Soft Computing March 5, 2018
Figure S.1: Performance of MOEA/D with various μ settings on the DTLZ1 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.2: Performance of MOEA/D with various μ settings on the DTLZ2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.3: Performance of MOEA/D with various μ settings on the DTLZ3 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.4: Performance of MOEA/D with various μ settings on the DTLZ4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.5: Performance of MOEA/D with various \(\mu \) settings on the WFG1 problem with \(M \in \{2, 3, 4, 5\} \). The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.6: Performance of MOEA/D with various μ settings on the WFG2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.7: Performance of MOEA/D with various μ settings on the WFG3 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.8: Performance of MOEA/D with various μ settings on the WFG4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.9: Performance of MOEA/D with various μ settings on the WFG5 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.10: Performance of MOEA/D with various \(\mu \) settings on the WFG6 problem with \(M \in \{2, 3, 4, 5\} \). The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.11: Performance of MOEA/D with various μ settings on the WFG7 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.12: Performance of MOEA/D with various μ settings on the WFG8 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.13: Performance of MOEA/D with various μ settings on the WFG9 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.14: Performance of MOEA/D with the three scalarizing functions (g^{cdm}, g^{cdh}, and g^{phi} with $\theta = 5$) on the DTLZ1 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.15: Performance of MOEA/D with the three scalarizing functions (g_{chm}, g_{chd}, and g_{pbi} with $\theta = 5$) on the DTLZ2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.16: Performance of MOEA/D with the three scalarizing functions (g^{phm}, g^{phd}, and g^{phi} with $\theta = 5$) on the DTLZ3 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure 8.17: Performance of MOEA/D with the three scalarizing functions (g_{hm}, g_{hd}, and g_{pbi} with $\theta = 5$) on the DTLZ4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.18: Performance of MOEA/D with the three scalarizing functions (g^{chm}, g^{chd}, and g^{pbi} with $\theta = 5$) on the WFG1 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.19: Performance of MOEA/D with the three scalarizing functions (g_{chm}, g_{chd}, and g_{pbi} with $\theta = 5$) on the WFG2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.20: Performance of MOEA/D with the three scalarizing functions (g_{hm}^{hl}, g_{hd}^{hl}, and g_{pbi}^{hl} with $\theta = 5$) on the WFG3 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.21: Performance of MOEA/D with the three scalarizing functions \(\gamma^{chm}, \gamma^{chd}, \) and \(\gamma^{pbi} \) with \(\theta = 5 \) on the WFG4 problem with \(M \in \{2, 3, 4, 5\} \). The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.22: Performance of MOEA/D with the three scalarizing functions (g_{chm}, g_{chd}, and g_{pbi} with $\theta = 5$) on the WFG5 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.23: Performance of MOEA/D with the three scalarizing functions (g^{chm}, g^{chd}, and g^{pbi} with $\theta = 5$) on the WFG6 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.24: Performance of MOEA/D with the three scalarizing functions ($g_{\text{hm}}, g_{\text{hd}},$ and g_{pbi} with $\theta = 5$) on the WFG7 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.25: Performance of MOEA/D with the three scalarizing functions \(g^{\text{chm}}, g^{\text{chd}}, \) and \(g^{\text{pbi}} \) with \(\theta = 5 \) on the WFG8 problem with \(M \in \{2, 3, 4, 5\} \). The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.26: Performance of MOEA/D with the three scalarizing functions (g^{chm}, g^{chd}, and g^{pbi} with $\theta = 5$) on the WFG9 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.27: Performance of MOEA/D using the PBI function g_{PBI} with various θ values on the DTLZ1 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.28: Performance of MOEA/D using the PBI function g_pbi with various θ values on the DTLZ2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.29: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the DTLZ3 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.30: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the DTLZ4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.31: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG1 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.32: Performance of MOEA/D using the PBI function g_{pbi} with various θ values on the WFG2 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.33: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG3 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.34: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG4 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.35: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG5 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.36: Performance of MOEA/D using the PBI function g_{pbi} with various θ values on the WFG6 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.37: Performance of MOEA/D using the PBI function g^{pbi} with various θ values on the WFG7 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.38: Performance of MOEA/D using the PBI function g_{pbi} with various θ values on the WFG8 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.39: Performance of MOEA/D using the PBI function g_{pbi} with various θ values on the WFG9 problem with $M \in \{2, 3, 4, 5\}$. The horizontal and vertical axes represent the number of function evaluations and the HV values, respectively. The shaded area indicates 25-75 percentiles.
Figure S.40: Influence of μ on the performance of MOEA/D with the three scalarizing functions (f^{chd}, f^{chm}, and f^{gb}) on the DTLZ1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.41: Influence of μ on the performance of MOEA/D with the three scalarizing functions (f^{chd}, f^{chm}, and f^{gb}) on the DTLZ2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.42: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g_{chm}, g_{chd}, and g_{pbi}) on the DTLZ3 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.43: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g_{chm}, g_{chd}, and g_{pbi}) on the DTLZ4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.44: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^{hm}, g^{chd}, and g^{pbi}) on the WFG1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.45: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^{hm}, g^{chd}, and g^{pbi}) on the WFG2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.46: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^hmi, g^chd, and g^pbi) on the WFG3 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.47: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^hmi, g^chd, and g^pbi) on the WFG4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.48: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^{hm}, g^{chd}, and g^{pbi}) on the WFG5 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.49: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^{hm}, g^{chd}, and g^{pbi}) on the WFG6 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.50: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g_{hm}, g_{chd}, and g_{pbi}) on the WFG7 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.51: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g_{hm}, g_{chd}, and g_{pbi}) on the WFG8 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.52: Influence of μ on the performance of MOEA/D with the three scalarizing functions (g^{chm}, g^{chd}, and g^{pbi}) on the WFG9 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.53: Influence of μ on the performance of MOEA/D using $g^{ pathology}$ with various θ values on the DTLZ1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.54: Influence of μ on the performance of MOEA/D using $g^{ pathology}$ with various θ values on the DTLZ2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.55: Influence of μ on the performance of MOEA/D using q_{bai} with various θ values on the DTLZ3 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.56: Influence of μ on the performance of MOEA/D using q_{bai} with various θ values on the DTLZ4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.57: Influence of μ on the performance of MOEA/D using g^{bi} with various θ values on the WFG1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.58: Influence of μ on the performance of MOEA/D using g^{bi} with various θ values on the WFG2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.59: Influence of μ on the performance of MOEA/D using $g^{\phi|i}$ with various θ values on the WFG3 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.60: Influence of μ on the performance of MOEA/D using $g^{\phi|i}$ with various θ values on the WFG4 problem with $M \in \{2,3,5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.61: Influence of μ on the performance of MOEA/D using g^{ϕ_1} with various θ values on the WFG5 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.62: Influence of μ on the performance of MOEA/D using g^{ϕ_1} with various θ values on the WFG6 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.63: Influence of μ on the performance of MOEA/D using g^{ϕ_1} with various θ values on the WFG7 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.64: Influence of μ on the performance of MOEA/D using g^{ϕ_1} with various θ values on the WFG8 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.65: Influence of μ on the performance of MOEA/D using ρ^{hyp} with various θ values on the WFG9 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.66: Influence of μ on the performance of MOEA/D using ρ^{hyp} with various θ values on the DTLZ1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.67: Influence of \(\mu \) on the performance of MOEA/D using \(\rho^{bhi} \) with various \(\theta \) values on the DTLZ2 problem with \(M \in \{2, 3, 5\} \). The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.68: Influence of \(\mu \) on the performance of MOEA/D using \(q^{0.6} \) with various \(\theta \) values on the DTLZ3 problem with \(M \in \{2, 3, 5\} \). The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.69: Influence of \(\mu \) on the performance of MOEA/D using \(q^{0.6} \) with various \(\theta \) values on the DTLZ4 problem with \(M \in \{2, 3, 5\} \). The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.70: Influence of μ on the performance of MOEA/D using p_{bi} with various θ values on the WFG1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.71: Influence of μ on the performance of MOEA/D using p_{bi} with various θ values on the WFG2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.72: Influence of μ on the performance of MOEA/D using $g^{0_{bi}}$ with various θ values on the WFG3 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.73: Influence of μ on the performance of MOEA/D using $g^{0_{bi}}$ with various θ values on the WFG4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

58
Figure S.74: Influence of μ on the performance of MOEA/D using ρ^{hes} with various θ values on the WFG5 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.75: Influence of μ on the performance of MOEA/D using ρ^{hes} with various θ values on the WFG6 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.76: Influence of μ on the performance of MOEA/D using g^{phi} with various θ values on the WFG7 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.77: Influence of μ on the performance of MOEA/D using g^{phi} with various θ values on the WFG8 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.78: Influence of μ on the performance of MOEA/D using ρ with various θ values on the WFG9 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.79: Comparison of the two Chebyshev functions \(g^\text{chm} \) and \(g^\text{chd} \) and \(g^\text{pbi} \) with various \(\theta \) values on the DTLZ1 problem with \(M \in \{2, 3, 5\} \). The median HV value at 50000 evaluations among 31 runs is shown.

Figure S.80: Comparison of the two Chebyshev functions \(g^\text{chm} \) and \(g^\text{chd} \) and \(g^\text{pbi} \) with various \(\theta \) values on the DTLZ2 problem with \(M \in \{2, 3, 5\} \). The median HV value at 50000 evaluations among 31 runs is shown.
Figure S.81: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the DTLZ3 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.

Figure S.82: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the DTLZ4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.
Figure S.83: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the WFG1 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.

Figure S.84: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the WFG2 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.
Figure S.85: Comparison of the two Chebyshev functions (g_{chm} and g_{chd}) and g_{pbi} with various θ values on the WFG3 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.

Figure S.86: Comparison of the two Chebyshev functions (g_{chm} and g_{chd}) and g_{pbi} with various θ values on the WFG4 problem with $M \in \{2, 3, 5\}$. The median HV value at 50,000 evaluations among 31 runs is shown.
Figure S.87: Comparison of the two Chebyshev functions (g_{chm} and g_{chd}) and g_{pbi} with various θ values on the WFG5 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.

Figure S.88: Comparison of the two Chebyshev functions (g_{chm} and g_{chd}) and g_{pbi} with various θ values on the WFG6 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.
Figure S.89: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the WFG7 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.

Figure S.90: Comparison of the two Chebyshev functions (g^{chm} and g^{chd}) and g^{pbi} with various θ values on the WFG8 problem with $M \in \{2, 3, 5\}$. The median HV value at 50 000 evaluations among 31 runs is shown.
Figure S.91: Comparison of the two Chebyshev functions (g_{chm} and g_{chd}) and g_{pbi} with various θ values on the WFG9 problem with $M \in \{2, 3, 5\}$. The median HV value at 50000 evaluations among 31 runs is shown.