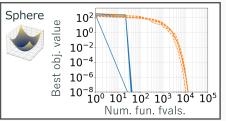
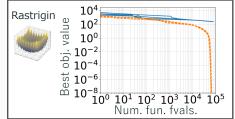

On Constructing Algorithm Portfolios in Algorithm Selection for Computationally Expensive Black-box Optimization in the Fixed-budget Setting

IAM Workshop 2024 at Melbourne

Takushi Yoshikawa and Ryoji Tanabe


Yokohama National University Yokohama city, Japan Algorithm selection for BBO Issuel Issuel Setup OCO Results Conclusion



Best optimizer depends on the property of a problem

BFGS reaches the optimal solution about 243 times faster than **DE**

Unlike **DE**, **BFGS** cannot reach the optimal solution

• A user needs to select the most promising optimizer

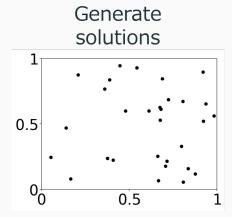
• Hand-selecting requires tedious trial-and-error

Feature-based offline algorithm selection for BBO

Issue2

Training phase (on a training problem set)

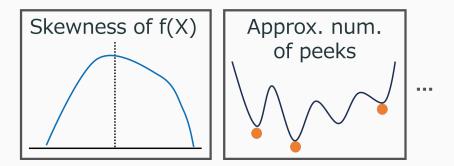
Issue1


Algorithm selection for BBO

- 1. Generate a solution set \mathcal{X} and calculate $f(\mathcal{X})$
- 2. Compute features based on the pair of $\mathcal X$ and $f(\mathcal X)$
- 3. Train k ML models for k optimizers in a portfolio \mathcal{A}
 - \mathcal{A} : a set of k candidate optimizers (k = 4 in this work)

Testing phase (on a target problem)

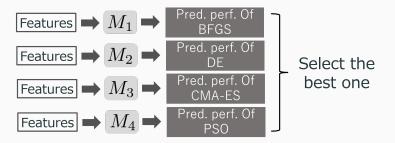
- 1. Generate a solution set \mathcal{X} and calculate $f(\mathcal{X})$
- 2. Compute features based on the pair of \mathcal{X} and $f(\mathcal{X})$
- 3. Predict the performance of k optimizers by the k ML models, then select the best one



Calculate objective values

	f(x)	×1	x2	
1	37.9	0.78	0.133	
2	70.6	0.949	0.646	
3	-34.1	0.858	0.15	
4	56.8	0.889	0.827	
5	-78.2	0.275	0.159	
6	-35.3	0.594	0.529	
7	-12.5	0.261	0.698	

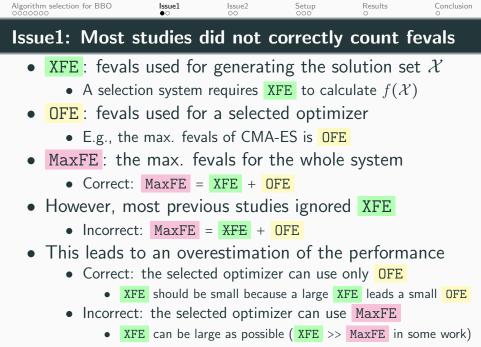
Algorithm selection for BBO Issuel Issuel Solution Solut


- Exploratory Landscape Analysis (ELA) [Mersmann 11]
 - Input: the pair of $\mathcal X$ and $f(\mathcal X)$
 - Output: a set of numerical features of a problem

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, Günter Rudolph: Exploratory landscape analysis. GECCO 2011: 829-836

Algorithm selection for BBOIssue1Issue2SetupResultsConclusion3. Predict the performance of k optimizers by the kML models, then select the best one

E.g., a portfolio $\mathcal{A} = \{ \text{ BFGS, DE, CMA-ES, PSO} \}$



• The system selects a promising optimizer without:

- any user interaction
- actually running the k optimizers on a real-world problem

Algorithm selection for BBO Issue1 Issue2 Setup Results Conclusion Contribution: Suggestion for constructing portfolios

- We focus on computationally expensive optimization
 - Some real-world problems require a long computation time to evaluate a solution x by expensive computer simulations
 - The max. number of fevals. (MaxFE) should be small
- Algorithm selection for compu. expensive opt.
 - has not been studied well
 - A few previous studies did it, but the setup was incorrect
- We point out two issues in existing approaches

Algorithm selection for BBO	lssue1	lssue2	Setup	Results	Conclusion
	○●	00	000	0	0
Our approach f	or the is	sue1			

MaxFE = XFE + OFE

Issue2: Previous studies considered MaxFE instead of OFE when constructing algorithm portfolios

Issue2

• **OFE**: fevals used for a selected optimizer

Issue1

Algorithm selection for BBO

- MaxFE: max. fevals for the whole system
- How to construct a portfolio in previous studies
 - Run many optimizers on training problems until MaxFE
 - Select k optimizers based on their performance at MaxFE
- But, an optimizer can use only OFE, not MaxFE
 - Suppose: MaxFE= 1000 and OFE= 500
 - The portfolio consists of good optimizers at 1000 fevals
 - But, they are unlikely to perform well at 500 fevals
- This gap can make the effectiveness of portfolio poor

Algorithm selection for BBO Issue1 Solution of October Setup Setup Conclusion Conclusion Conclusion Setup Se

Construct algorithm portfolios based on the performance of optimizers at OFE, not at MaxFE

 Algorithm selection for BBO
 Issue1
 Issue2
 Setup
 Results
 Conclusion

 Experimental setup

- The COCO platform [Hansen 21]
 - The 24 bbob functions with $n \in \{2,3,5,10\}$
 - Portfolios were constructed based on the benchmarking data of 244 optimizers in the COCO archive
 - Local search method for subset selection was used
- Settings for algorithm selection systems
 - flacco [Kerschke 19] was used for feature computation
 - MaxFE was set to $100 \times n$ (*n*: dimension)
 - The first study to set <code>MaxFE</code> below $100 \times n$ actually
 - Random forest regressor was used

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, Dimo Brockhoff: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Methods Softw. 36(1): 114-144 (2021)

Pascal Kerschke and Heike Trautmann. 2019. Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-package flacco. In Applications in Statistical Computing – From Music Data Analysis to Industrial Quality Improvement. Springer, 93-123.

- **OFE**: fevals used for a selected optimizer
- XFE: fevals used for generating the solution set ${\cal X}$
- MaxFE: max. fevals for the whole system
 - MaxFE = XFE + OFE = 100n (n: dimension)
- \mathcal{A}_{max} : based on the perf. at MaxFE = 100n
 - Traditional, incorrect construction approach
- \mathcal{A}_{90} : based on the perf. at OFE= 90n
 - XFE = 100n 90n = 10n
- \mathcal{A}_{85} : based on the perf. at OFE= 85n
 - XFE = 100n 85n = 15n

• \mathcal{A}_{80} , \mathcal{A}_{75} , \mathcal{A}_{50} were constructed in the same way

Algori 0000		on for BBO		lssue1 00	lssue2 00	Setu ○○●	p	Results 0	Conclusion O
6	portf	olios	con	struct	ed in	this wo	rk ((k = 4)	
Su	rrogat	e-CMA	-ES	STEP-	based	mathemat	ical	DIRECT	-based
J	$4_{\rm max}$	lq-CMA	Α-ES,	BIPOP-	aCMA-S	TEP , MLS	SL, d	oMads-2N	
J	4 ₉₀	DTS-C	MA-E	S_005 ,	BrentSTE	Pif, DIRE	ECT-F	<mark>REV</mark> , CMA	-ES-2019
A	4_{85}	lq-CMA	Α-ES,	Imm-CN	MA-ES ,	STEPifeg ,	fmir	ncon	
J	4 ₈₀	lq-CMA	A-ES,	Imm-CN	MA-ES,	STEPifeg ,	fmir	icon	
٦	4 ₇₅	lq-CM/	Α-ES,	Imm-CI	MA-ES,	BrentSTEF	if, [DIRECT-RE	V
J	4 ₅₀	lq-CMA	Α-ES,	Imm-CN	MA-ES,	BrentSTEP	rr,	oMads-2N	

- Left surrogate-CMA-ES is the single-best solver (SBS)
 - The best optimizer in terms of the average performance
 - Only in $\mathcal{A}_{90}\text{, the SBS}$ is DTS-CMA-ES_005

Average rankings of 10 algorithm selection systems

Issue2

 $\bullet\,$ The system with \mathcal{A}_{90} performs the best

lssue1

Algorithm selection for BBO

• Importance of using the performance at OFE (not MaxFE)

Setup

Results

A large OFE allows a long run of an optimizer

Portfolio	OFE	XFE	MaxFE	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 5	<i>n</i> = 10
$\mathcal{A}_{ ext{max}}$	90n	10n	100n	5.50	5.65	5.73	5.58
$\mathcal{A}_{ ext{max}}$	85n	15n	100n	5.54	5.48	6.02	6.06
$\mathcal{A}_{ ext{max}}$	80n	20n	100n	6.21	5.10	5.35	6.15
$\mathcal{A}_{ ext{max}}$	75n	25n	100n	5.50	4.85	4.60	5.94
$\mathcal{A}_{ ext{max}}$	50n	50n	100n	5.00	5.85	6.00	5.98
\mathcal{A}_{90}	90n	10n	100n	4.44	4.15	4.12	3.04
\mathcal{A}_{85}	85n	15n	100n	4.38	4.52	5.37	4.04
\mathcal{A}_{80}	80n	20n	100n	5.29	5.65	5.79	4.67
\mathcal{A}_{75}	75n	25n	100n	5.21	5.81	4.73	5.29
\mathcal{A}_{50}	50n	50n	100n	7.94	7.94	7.27	8.25

Conclusion: This work focused on portfolios in algorithm selection for comput. expensive BBO

Issue2

Setup

- XFE: fevals used for generating the solution set ${\mathcal X}$
- OFE: fevals used for a selected optimizer

Issue1

- MaxFE: the max. fevals for the whole system
- Two take home messages:

Algorithm selection for BBO

- MaxFE should be XFE + OFE
- Portfolios should be constructed based on the performance of optimizers for OFE, not MaxFE
- Future work: Improving selection systems
 - The performance of the present system is not good